Automated extraction of sudden cardiac death risk factors in hypertrophic cardiomyopathy patients by natural language processing

被引:15
作者
Moon, Sungrim [1 ]
Liu, Sijia [1 ]
Scott, Christopher G. [2 ]
Samudrala, Sujith [3 ]
Abidian, Mohamed M. [3 ]
Geske, Jeffrey B. [3 ]
Noseworthy, Peter A. [3 ]
Shellum, Jane L. [4 ]
Chaudhry, Rajeev [4 ,5 ]
Ommen, Steve R. [3 ]
Nishimura, Rick A. [3 ]
Liu, Hongfang [1 ]
Arruda-Olson, Adelaide M. [1 ,3 ]
机构
[1] Mayo Clin, Dept Hlth Sci Res, Div Digital Hlth Sci, Rochester, MN USA
[2] Mayo Clin, Dept Hlth Sci Res, Div Biomed Stat & Informat, Rochester, MN USA
[3] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[4] Mayo Clin, Robert & Patricia Kern Ctr Sci Hlth Care Delivery, Rochester, MN USA
[5] Mayo Clin, Div Community Internal Med, Rochester, MN USA
基金
美国国家卫生研究院;
关键词
Hypertrophic cardiomyopathy; Sudden cardiac death; Natural language processing; Electronic health records; HEALTH-CARE-SYSTEM; CLINICAL NOTES; BIG DATA; INFORMATICS; VALIDATION; STATEMENT; DISEASE; RECORDS;
D O I
10.1016/j.ijmedinf.2019.05.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: The management of hypertrophic cardiomyopathy (HCM) patients requires the knowledge of risk factors associated with sudden cardiac death (SCD). SCD risk factors such as syncope and family history of SCD (FH-SCD) as well as family history of HCM (FH-HCM) are documented in electronic health records (EHRs) as clinical narratives. Automated extraction of risk factors from clinical narratives by natural language processing (NLP) may expedite management workflow of HCM patients. The aim of this study was to develop and deploy NLP algorithms for automated extraction of syncope, FH-SCD, and FH-HCM from clinical narratives. Methods and Results: We randomly selected 200 patients from the Mayo HCM registry for development (n = 100) and testing (n = 100) of NLP algorithms for extraction of syncope, FH-SCD as well as FH-HCM from clinical narratives of EHRs. The clinical reference standard was manually abstracted by 2 independent annotators. Performance of NLP algorithms was compared to aggregation and summarization of data entries in the HCM registry for syncope, FH-SCD, and FH-HCM. We also compared the NLP algorithms with billing codes for syncope as well as responses to patient survey questions for FH-SCD and FH-HCM. These analyses demonstrated NLP had superior sensitivity (0.96 vs 0.39, p < 0.001) and comparable specificity (0.90 vs 0.92, p = 0.74) and PPV (0.90 vs 0.83, p = 0.37) compared to billing codes for syncope. For FH-SCD, NLP outperformed survey responses for all parameters (sensitivity: 0.91 vs 0.59, p = 0.002; specificity: 0.98 vs 0.50, p < 0.001; PPV: 0.97 vs 0.38, p < 0.001). NLP also achieved superior sensitivity (0.95 vs 0.24, p < 0.001) with comparable specificity (0.95 vs 1.0, p-value not calculable) and positive predictive value (PPV) (0.92 vs 1.0, p = 0.09) compared to survey responses for FH-HCM. Conclusions: Automated extraction of syncope, FH-SCD and FH-HCM using NLP is feasible and has promise to increase efficiency of workflow for providers managing HCM patients.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 24 条
  • [11] International External Validation Study of the 2014 European Society of Cardiology Guidelines on Sudden Cardiac Death Prevention in Hypertrophic Cardiomyopathy (EVIDENCE-HCM)
    O'Mahony, Constantinos
    Jichi, Fatima
    Ommen, Steve R.
    Christiaans, Imke
    Arbustini, Eloisa
    Garcia-Pavia, Pablo
    Cecchi, Franco
    Olivotto, Iacopo
    Kitaoka, Hiroaki
    Gotsman, Israel
    Carr-White, Gerald
    Mogensen, Jens
    Antoniades, Loizos
    Mohiddin, Saidi A.
    Maurer, Mathew S.
    Tang, Hak Chiaw
    Geske, Jeffrey B.
    Siontis, Konstantinos C.
    Mahmoud, Karim D.
    Vermeer, Alexa
    Wilde, Arthur
    Favalli, Valentina
    Guttmann, Oliver P.
    Gallego-Delgado, Maria
    Dominguez, Fernando
    Tanini, Ilaria
    Kubo, Toru
    Keren, Andre
    Bueser, Teofila
    Waters, Sarah
    Issa, Issa F.
    Malcolmson, James
    Burns, Tom
    Sekhri, Neha
    Hoeger, Christopher W.
    Omar, Rumana Z.
    Elliott, Perry M.
    [J]. CIRCULATION, 2018, 137 (10) : 1015 - 1023
  • [12] A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD)
    O'Mahony, Constantinos
    Jichi, Fatima
    Pavlou, Menelaos
    Monserrat, Lorenzo
    Anastasakis, Aristides
    Rapezzi, Claudio
    Biagini, Elena
    Ramon Gimeno, Juan
    Limongelli, Giuseppe
    McKenna, William J.
    Omar, Rumana Z.
    Elliott, Perry M.
    [J]. EUROPEAN HEART JOURNAL, 2014, 35 (30) : 2010 - +
  • [13] Automated methods for the summarization of electronic health records
    Pivovarov, Rimma
    Elhadad, Noemie
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (05) : 938 - 947
  • [14] Identifying unmet clinical need in hypertrophic cardiomyopathy using national electronic health records
    Pujades-Rodriguez, Mar
    Guttmann, Oliver P.
    Gonzalez-Izquierdo, Arturo
    Duyx, Bram
    O'Mahony, Constantinos
    Elliott, Perry
    Hemingway, Harry
    [J]. PLOS ONE, 2018, 13 (01):
  • [15] Risk of Cardiomyopathy in Younger Persons With a Family History of Death from Cardiomyopathy A Nationwide Family Study in a Cohort of 3.9 Million Persons
    Ranthe, Mattis F.
    Carstensen, Lisbeth
    Oyen, Nina
    Jensen, Morten K.
    Axelsson, Anna
    Wohlfahrt, Jan
    Melbye, Mads
    Bundgaard, Henning
    Boyd, Heather A.
    [J]. CIRCULATION, 2015, 132 (11) : 1013 - 1019
  • [16] Need of informatics in designing interoperable clinical registries
    Rastegar-Mojarad, Majid
    Sohn, Sunghwan
    Wang, Liwei
    Shen, Feichen
    Bleeker, Troy C.
    Cliby, William A.
    Liu, Hongfang
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 108 : 78 - 84
  • [17] Data from clinical notes: a perspective on the tension between structure and flexible documentation
    Rosenbloom, S. Trent
    Denny, Joshua C.
    Xu, Hua
    Lorenzi, Nancy
    Stead, William W.
    Johnson, Kevin B.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2011, 18 (02) : 181 - 186
  • [18] 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society
    Shen, Win-Kuang
    Sheldon, Robert S.
    Benditt, David G.
    Cohen, Mitchell I.
    Forman, Daniel E.
    Goldberger, Zachary D.
    Grubb, Blair P.
    Hamdan, Mohamed H.
    Krahn, Andrew D.
    Link, Mark S.
    Olshansky, Brian
    Raj, Satish R.
    Sandhu, Roopinder Kaur
    Sorajja, Dan
    Sun, Benjamin C.
    Yancy, Clyde W.
    Levine, Glenn N.
    O'Gara, Patrick T.
    Halperin, Jonathan L.
    Al-Khatib, Sana M.
    Birtcher, Kim K.
    Bozkurt, Biykem
    Brindis, Ralph G.
    Cigarroa, Joaquin E.
    Curtis, Lesley H.
    Fleisher, Lee A.
    Gentile, Federico
    Gidding, Samuel
    Hlatky, Mark A.
    Ikonomidis, John
    Joglar, Jose
    Pressler, Susan J.
    Wijeysundera, Duminda N.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (05) : 620 - 663
  • [19] Detection of clinically important colorectal surgical site infection using Bayesian network
    Sohn, Sunghwan
    Larson, David W.
    Habermann, Elizabeth B.
    Naessens, James M.
    Alabbad, Jasim Y.
    Liu, Hongfang
    [J]. JOURNAL OF SURGICAL RESEARCH, 2017, 209 : 168 - 173
  • [20] Using machine learning for concept extraction on clinical documents from multiple data sources
    Torii, Manabu
    Wagholikar, Kavishwar
    Liu, Hongfang
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2011, 18 (05) : 580 - 587