Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis

被引:1136
作者
Foerstermann, Ulrich [1 ]
Xia, Ning [1 ]
Li, Huige [1 ,2 ,3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Med Ctr, Dept Pharmacol, Obere Zahlbacher Str 67, D-55131 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Med Ctr, CTVB, Mainz, Germany
[3] Partner Site Rhine Main, German Ctr Cardiovasc Res DZHK, Mainz, Germany
关键词
atherosclerosis; nitric oxide; oxidative stress; reactive oxygen species; risk factors; CORONARY-ARTERY-DISEASE; LOW-DENSITY-LIPOPROTEIN; EXTRACELLULAR-SUPEROXIDE DISMUTASE; APOLIPOPROTEIN-E-DEFICIENT; CELL-ADHESION MOLECULE-1; HUMAN ENDOTHELIAL-CELLS; E-KNOCKOUT MICE; SYNTHASE GENE POLYMORPHISMS; ISCHEMIC-HEART-DISEASE; SMOOTH-MUSCLE-CELLS;
D O I
10.1161/CIRCRESAHA.116.309326
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Major reactive oxygen species (ROS)-producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
引用
收藏
页码:713 / 735
页数:23
相关论文
共 356 条
[1]   Substitution of glycine for arginino-213 in extracellular-superoxide dismutase impairs affinity for heparin and endothelial cell surface [J].
Adachi, T ;
Yamada, H ;
Yamada, Y ;
Morihara, N ;
Yamazaki, N ;
Murakami, T ;
Futenma, A ;
Kato, K ;
Hirano, K .
BIOCHEMICAL JOURNAL, 1996, 313 :235-239
[2]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[3]   Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice [J].
Alp, NJ ;
McAteer, MA ;
Khoo, J ;
Choudhury, RP ;
Channon, KM .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (03) :445-450
[4]   Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression [J].
Alp, NJ ;
Mussa, S ;
Khoo, J ;
Cai, SJ ;
Guzik, T ;
Jefferson, A ;
Goh, N ;
Rockett, KA ;
Channon, KM .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (05) :725-735
[5]   The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide [J].
Altaany, Zaid ;
Ju, YoungJun ;
Yang, Guangdong ;
Wang, Rui .
SCIENCE SIGNALING, 2014, 7 (342)
[6]   One Enzyme, Two Functions PON2 PREVENTS MITOCHONDRIAL SUPEROXIDE FORMATION AND APOPTOSIS INDEPENDENT FROM ITS LACTONASE ACTIVITY [J].
Altenhoefer, Sebastian ;
Witte, Ines ;
Teiber, John F. ;
Wilgenbus, Petra ;
Pautz, Andrea ;
Li, Huige ;
Daiber, Andreas ;
Witan, Heidrun ;
Clement, Albrecht M. ;
Foerstermann, Ulrich ;
Horke, Sven .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (32) :24398-24403
[7]   Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement [J].
Altenhofer, Sebastian ;
Radermacher, Kim A. ;
Kleikers, Pamela W. M. ;
Wingler, Kirstin ;
Schmidt, Harald H. H. W. .
ANTIOXIDANTS & REDOX SIGNALING, 2015, 23 (05) :406-427
[8]   Individual and summed effects of high-risk genetic polymorphisms on recurrent cardiovascular events following ischemic heart disease [J].
Andreassi, Maria Grazia ;
Adlerstein, Daniel ;
Carpeggiani, Clara ;
Shehi, Erlet ;
Fantinato, Sonia ;
Ghezzi, Elisa ;
Botto, Nicoletta ;
Coceani, Michele ;
L'Abbate, Antonio .
ATHEROSCLEROSIS, 2012, 223 (02) :409-415
[9]   Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation [J].
Antoniades, Charalambos ;
Shirodaria, Cheerag ;
Crabtree, Mark ;
Rinze, Ruth ;
Alp, Nicholas ;
Cunnington, Colin ;
Diesch, Jonathan ;
Tousoulis, Dimitris ;
Stefanadis, Christodoulos ;
Leeson, Paul ;
Ratnatunga, Chandi ;
Pillai, Ravi ;
Channon, Keith M. .
CIRCULATION, 2007, 116 (24) :2851-2859
[10]   Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications [J].
Apostolova, Nadezda ;
Victor, Victor M. .
ANTIOXIDANTS & REDOX SIGNALING, 2015, 22 (08) :686-729