Recent development of novel membranes for desalination

被引:205
作者
Yang, Zhe [1 ]
Ma, Xiao-Hua [1 ,2 ]
Tang, Chuyang Y. [1 ]
机构
[1] Univ Hong Kong, Dept Civil Engn, HW 6-19b,Haking Wong Bldg,Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem Engn, Mei Long Rd 130, Shanghai 200237, Peoples R China
关键词
Aquaporin membranes; Carbon-based membranes; Membrane fabrication; Desalination; Water treatment; THIN-FILM NANOCOMPOSITE; GRAPHENE OXIDE MEMBRANES; CARBON NANOTUBE MEMBRANES; REVERSE-OSMOSIS MEMBRANE; AQUAPORIN WATER CHANNELS; INTERNAL CONCENTRATION POLARIZATION; FLUORIDE ULTRAFILTRATION MEMBRANES; EMBEDDED BIOMIMETIC MEMBRANES; HOLLOW-FIBER MEMBRANES; MIXED MATRIX MEMBRANE;
D O I
10.1016/j.desal.2017.11.046
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the past decades, novel materials (e.g., aquaporin proteins, carbon nanotubes, nanoporous graphene and graphene oxide) have emerged as promising candidates for synthesizing high performance desalination membranes. These materials can potentially achieve water fluxes of several orders of magnitude higher compared to the state-of-the-art thin-film composite polyamide reverse osmosis membranes. This paper provides a comprehensive summary of the current progresses and challenges in synthesizing aquaporin-based and carbon-based membranes. After a detailed review of the material properties of aquaporin proteins, carbon nanotubes, nano porous graphene and graphene oxide, a general framework of membrane design and material incorporation is established. The fabrication methods and separation performance for each type of membrane are summarized. Future perspectives of aquaporin-based and carbon-based membranes are discussed in lieu with their ultimate separation performance and commercial scalability.
引用
收藏
页码:37 / 59
页数:23
相关论文
共 197 条
[1]  
Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
[2]   Aquaporin water channels - from atomic structure to clinical medicine [J].
Agre, P ;
King, LS ;
Yasui, M ;
Guggino, WB ;
Ottersen, OP ;
Fujiyoshi, Y ;
Engel, A ;
Nielsen, S .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (01) :3-16
[3]   Aquaporin water channels [J].
Agre, P .
BIOSCIENCE REPORTS, 2004, 24 (03) :127-163
[4]   Molecular Simulation of Water in Carbon Nanotubes [J].
Alexiadis, Alessio ;
Kassinos, Stavros .
CHEMICAL REVIEWS, 2008, 108 (12) :5014-5034
[5]   Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes [J].
Amini, Maryam ;
Jahanshahi, Mohsen ;
Rahimpour, Ahmad .
JOURNAL OF MEMBRANE SCIENCE, 2013, 435 :233-241
[6]  
[Anonymous], 1860, ANN CHIM PHYS
[7]   Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis [J].
Arena, Jason T. ;
McCloskey, Bryan ;
Freeman, Benny D. ;
McCutcheon, Jeffrey R. .
JOURNAL OF MEMBRANE SCIENCE, 2011, 375 (1-2) :55-62
[8]   High performance and antifouling vertically aligned carbon nanotube membrane for water purification [J].
Baek, Youngbin ;
Kim, Cholin ;
Seo, Dong Kyun ;
Kim, Taewoo ;
Lee, Jeong Seok ;
Kim, Yong Hyup ;
Ahn, Kyung Hyun ;
Bae, Sang Seek ;
Lee, Sang Cheol ;
Lim, Jaelim ;
Lee, Kyunghyuk ;
Yoon, Jeyong .
JOURNAL OF MEMBRANE SCIENCE, 2014, 460 :171-177
[9]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[10]   Manifestation of ripples in free-standing graphene in lattice images obtained in an aberration-corrected scanning transmission electron microscope [J].
Bangert, U. ;
Gass, M. H. ;
Bleloch, A. L. ;
Nair, R. R. ;
Geim, A. K. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (06) :1117-1122