A reduction model for eigensolutions of damped viscoelastic sandwich structures

被引:19
作者
Boumediene, Faiza [1 ]
Cadou, Jean-Marc [2 ]
Duigou, Laetitia [2 ]
Daya, El Mostafa [3 ,4 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Lab Mecan Avancee, Fac Genie Mecan & Genie Proc, Algiers, Algeria
[2] Univ Bretagne Sud, Univ Europeenne Bretagne, Lab Ingn Mat Bretagne, F-56321 Lorient, France
[3] Univ Lorraine, CNRS, UMR 7239, Lab Etud Microstruct & Mecan Mat, F-57045 Metz, France
[4] Univ Lorraine, Lab Excellence Design Alloy Met Low MAss Struct D, Metz, France
关键词
Sandwich structure; Reduction model; High order Newton method; Beam; Cylindrical shell; NONLINEAR EIGENVALUE PROBLEMS; VIBRATION ANALYSIS; HARMONIC RESPONSE; ELEMENT; PLATES; BEAMS; CORE; FORMULATION; EQUATION;
D O I
10.1016/j.mechrescom.2014.03.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this paper is to develop a reduction method to determine the modal characteristics of viscoelastic sandwich structures. The method is based on the high order Newton algorithm and reduction techniques. Numerical tests have been performed in the case of sandwich beams and cylindrical shells. The comparison of the results obtained by the reduction method with those given by direct simulation shows both a good agreement and a significant reduction in computational cost. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 81
页数:8
相关论文
共 50 条
[21]   Homogenization modeling and numerical simulation of piezolaminated lattice sandwich structures with viscoelastic material [J].
Xing, Yu-Xuan ;
Gao, Ying-Shan ;
Liu, Tao ;
Dou, Wei-Yuan ;
Zhang, Shun-Qi .
MATERIALS TODAY COMMUNICATIONS, 2023, 35
[22]   Finite Element Model for Hybrid Active-Passive Damping Analysis of Anisotropic Laminated Sandwich Structures [J].
Araujo, A. L. ;
Soares, C. M. Mota ;
Soares, C. A. Mota .
JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2010, 12 (04) :397-419
[23]   Analysis of guided wave propagation in highly damped viscoelastic multilayered composite structures using the biot model [J].
Xu, Zelin ;
Wang, Tiqing ;
Li, Peng ;
Wang, Bin ;
Qian, Zhenghua ;
Maruyama, Taizo ;
Zhu, Feng ;
Kuznetsova, Iren .
ULTRASONICS, 2025, 155
[24]   A compression shear mixed finite element model for vibration and damping analysis of viscoelastic sandwich structures [J].
Huang, Zhicheng ;
Qin, Zhaoye ;
Chui, Fulei .
JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2019, 21 (06) :1775-1798
[25]   Vibration Analysis of Damaged Viscoelastic Composite Sandwich Plate [J].
Baali, Messaoud ;
Amrane, Mohamed Nadir .
PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 2024, 68 (02) :85-96
[26]   Damping mechanism of elastic-viscoelastic-elastic sandwich structures [J].
Huang, Zhicheng ;
Qin, Zhaoye ;
Chu, Fulei .
COMPOSITE STRUCTURES, 2016, 153 :96-107
[27]   Dynamic response of viscoelastic multiple-core sandwich structures [J].
D'Ottavio, M. ;
Krasnobrizha, A. ;
Valot, E. ;
Polit, O. ;
Vescovini, R. ;
Dozio, L. .
JOURNAL OF SOUND AND VIBRATION, 2021, 491
[28]   A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates [J].
Ferreira, A. J. M. ;
Araujo, A. L. ;
Neves, A. M. A. ;
Rodrigues, J. D. ;
Carrera, E. ;
Cinefra, M. ;
Mora Soares, C. M. .
COMPOSITES PART B-ENGINEERING, 2013, 45 (01) :1258-1264
[29]   Eigensolutions of nonviscously damped systems based on the fixed-point iteration [J].
Lazaro, Mario .
JOURNAL OF SOUND AND VIBRATION, 2018, 418 :100-121
[30]   Identification of frequency-dependent viscoelastic damped structures using an adjoint method [J].
Hamdaoui, M. ;
Ledi, K. S. ;
Robin, G. ;
Daya, E. M. .
JOURNAL OF SOUND AND VIBRATION, 2019, 453 :237-252