A reduction model for eigensolutions of damped viscoelastic sandwich structures

被引:19
作者
Boumediene, Faiza [1 ]
Cadou, Jean-Marc [2 ]
Duigou, Laetitia [2 ]
Daya, El Mostafa [3 ,4 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Lab Mecan Avancee, Fac Genie Mecan & Genie Proc, Algiers, Algeria
[2] Univ Bretagne Sud, Univ Europeenne Bretagne, Lab Ingn Mat Bretagne, F-56321 Lorient, France
[3] Univ Lorraine, CNRS, UMR 7239, Lab Etud Microstruct & Mecan Mat, F-57045 Metz, France
[4] Univ Lorraine, Lab Excellence Design Alloy Met Low MAss Struct D, Metz, France
关键词
Sandwich structure; Reduction model; High order Newton method; Beam; Cylindrical shell; NONLINEAR EIGENVALUE PROBLEMS; VIBRATION ANALYSIS; HARMONIC RESPONSE; ELEMENT; PLATES; BEAMS; CORE; FORMULATION; EQUATION;
D O I
10.1016/j.mechrescom.2014.03.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this paper is to develop a reduction method to determine the modal characteristics of viscoelastic sandwich structures. The method is based on the high order Newton algorithm and reduction techniques. Numerical tests have been performed in the case of sandwich beams and cylindrical shells. The comparison of the results obtained by the reduction method with those given by direct simulation shows both a good agreement and a significant reduction in computational cost. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 81
页数:8
相关论文
共 29 条
[1]   Iterative Methods for Eigenvalues of Viscoelastic Systems [J].
Adhikari, Sondipon ;
Pascual, Blanca .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2011, 133 (02)
[2]   Sixth order differential equation for sandwich beam deflection including transverse shear [J].
Alvelid, Magnus .
COMPOSITE STRUCTURES, 2013, 102 :29-37
[3]   Damping optimisation of hybrid active-passive sandwich composite structures [J].
Araujo, A. L. ;
Martins, P. ;
Mota Soares, C. M. ;
Mota Soares, C. A. ;
Herskovits, J. .
ADVANCES IN ENGINEERING SOFTWARE, 2012, 46 (01) :69-74
[4]   Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method [J].
Arikoglu, Aytac ;
Ozkol, Ibrahim .
COMPOSITE STRUCTURES, 2010, 92 (12) :3031-3039
[5]   A multiscale approach for the vibration analysis of heterogeneous materials: Application to passive damping [J].
Attipou, Kodjo ;
Nezamabadi, Saeid ;
Daya, El Mostafa ;
Zahrouni, Hamid .
JOURNAL OF SOUND AND VIBRATION, 2013, 332 (04) :725-739
[6]   Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment [J].
Banerjee, J. R. ;
Cheung, C. W. ;
Morishima, R. ;
Perera, M. ;
Njuguna, J. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (22-23) :7543-7563
[7]   Forced harmonic response of sandwich plates with viscoelastic core using reduced-order model [J].
Bilasse, M. ;
Oguamanam, D. C. D. .
COMPOSITE STRUCTURES, 2013, 105 :311-318
[8]   Complex modes based numerical analysis of viscoelastic sandwich plates vibrations [J].
Bilasse, M. ;
Azrar, L. ;
Daya, E. M. .
COMPUTERS & STRUCTURES, 2011, 89 (7-8) :539-555
[9]   Linear and nonlinear vibrations analysis of viscoelastic sandwich beams [J].
Bilasse, M. ;
Daya, E. M. ;
Azrar, L. .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (23) :4950-4969
[10]   Nonlinear forced vibration of damped plates coupling asymptotic numerical method and reduction models [J].
Boumediene, F. ;
Duigou, L. ;
Boutyour, E. H. ;
Miloudi, A. ;
Cadou, J. M. .
COMPUTATIONAL MECHANICS, 2011, 47 (04) :359-377