Poly-Z group actions on Kirchberg algebras II

被引:0
作者
Izumi, Masaki [1 ]
Matui, Hiroki [2 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan
[2] Chiba Univ, Grad Sch Sci, Inage Ku, Chiba 2638522, Japan
关键词
C-ASTERISK-ALGEBRAS; FINITE-GROUP ACTIONS; ROHLIN PROPERTY; OUTER ACTIONS; AUTOMORPHISMS; CLASSIFICATION; CONJECTURE; STABILITY; NUCLEAR;
D O I
10.1007/s00222-020-01019-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the second part of our serial work on the classification of poly-Z group actions on Kirchberg algebras. Based on technical results obtained in our previous work, we completely reduce the problem to the classification of continuous fields of Kirchberg algebras over the classifying spaces. As an application, we determine the number of cocycle conjugacy classes of outer Z(n)-actions on the Cuntz algebras.
引用
收藏
页码:699 / 766
页数:68
相关论文
共 50 条
[11]   The C*-algebra of a vector bundle [J].
Dadarlat, Marius .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 670 :121-143
[12]   Continuous fields of C*-algebras over finite dimensional spaces [J].
Dadarlat, Marius .
ADVANCES IN MATHEMATICS, 2009, 222 (05) :1850-1881
[13]  
DAVIS JF, 2001, LECT NOTES ALGEBRAIC, V35
[14]   Any virtually polycyclic group admits a NIL-affine crystallographic action [J].
Dekimpe, K .
TOPOLOGY, 2003, 42 (04) :821-832
[15]   QUASI-FREE ACTIONS OF FINITE GROUPS ON THE CUNTZ ALGEBRA O∞ [J].
Goldstein, Pavle ;
Izumi, Masaki .
TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) :729-749
[16]  
Hirshberg I, 2007, MATH ANN, V339, P695, DOI 10.1007/s00208-007-0129-8
[17]  
Husemoller D, 1994, Graduate Texts inMathematics, V20
[18]   Finite group actions on C*-algebras with the Rohlin property, I [J].
Izumi, M .
DUKE MATHEMATICAL JOURNAL, 2004, 122 (02) :233-280
[19]   Finite group actions on C*-algebras with the Rohlin property -: II [J].
Izumi, M .
ADVANCES IN MATHEMATICS, 2004, 184 (01) :119-160
[20]  
Izumi M., J NONCOMMUT GEOM