Poly-Z group actions on Kirchberg algebras II

被引:0
作者
Izumi, Masaki [1 ]
Matui, Hiroki [2 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan
[2] Chiba Univ, Grad Sch Sci, Inage Ku, Chiba 2638522, Japan
关键词
C-ASTERISK-ALGEBRAS; FINITE-GROUP ACTIONS; ROHLIN PROPERTY; OUTER ACTIONS; AUTOMORPHISMS; CLASSIFICATION; CONJECTURE; STABILITY; NUCLEAR;
D O I
10.1007/s00222-020-01019-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the second part of our serial work on the classification of poly-Z group actions on Kirchberg algebras. Based on technical results obtained in our previous work, we completely reduce the problem to the classification of continuous fields of Kirchberg algebras over the classifying spaces. As an application, we determine the number of cocycle conjugacy classes of outer Z(n)-actions on the Cuntz algebras.
引用
收藏
页码:699 / 766
页数:68
相关论文
共 50 条
[1]   Compact Lie group action with the continuous Rokhlin property [J].
Arano, Yuki ;
Kubota, Yosuke .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) :522-545
[2]  
AUSLANDER L, 1976, J LOND MATH SOC, V14, P331
[3]   The uniqueness of polynomial crystallographic actions [J].
Benoist, Y ;
Dekimpe, K .
MATHEMATISCHE ANNALEN, 2002, 322 (03) :563-571
[4]  
BLACKADAR B., 1998, NO 5 MATH SCI RES I, V5
[5]   Non-simple purely infinite C*-algebras:: the Hausdorff case [J].
Blanchard, E ;
Kirchberg, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (02) :461-513
[6]  
Brown N., 2008, Graduate Studies in Mathematics, V88
[7]  
Dadarlat M, 2007, J NONCOMMUT GEOM, V1, P113
[8]   A Dixmier-Douady theory for strongly self-absorbing C*- algebras [J].
Dadarlat, Marius ;
Pennig, Ulrich .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 :153-181
[9]   A Dixmier-Douady theory for strongly self-absorbing C*-algebras II: the Brauer group [J].
Dadarlat, Marius ;
Pennig, Ulrich .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) :1137-1154
[10]   Unit spectra of K-theory from strongly self-absorbing C*-algebras [J].
Dadarlat, Marius ;
Pennig, Ulrich .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01) :137-168