Small stochastic perturbations of random maps with position dependent probabilities

被引:0
|
作者
Bahsoun, W [1 ]
Góra, P [1 ]
Boyarsky, A [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
random map; absolutely continuous invariant measure; Frobenius-Perron operator;
D O I
10.1081/SAP-120037634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A position dependent random map is a dynamical system consisting of a collection of maps Such that, at each iteration, a selection of a map is made randomly by means of probabilities which are functions of position. Let f* be an invariant density of the position dependent random map T-. We consider a model of small random perturbations of the random map T-epsilon For each epsilon > 0, Tepsilon has an invariant density function f(epsilon). We prove that fepsilon --> f* as epsilon --> 0.
引用
收藏
页码:1121 / 1130
页数:10
相关论文
empty
未找到相关数据