Small stochastic perturbations of random maps with position dependent probabilities

被引:0
|
作者
Bahsoun, W [1 ]
Góra, P [1 ]
Boyarsky, A [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
random map; absolutely continuous invariant measure; Frobenius-Perron operator;
D O I
10.1081/SAP-120037634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A position dependent random map is a dynamical system consisting of a collection of maps Such that, at each iteration, a selection of a map is made randomly by means of probabilities which are functions of position. Let f* be an invariant density of the position dependent random map T-. We consider a model of small random perturbations of the random map T-epsilon For each epsilon > 0, Tepsilon has an invariant density function f(epsilon). We prove that fepsilon --> f* as epsilon --> 0.
引用
收藏
页码:1121 / 1130
页数:10
相关论文
共 50 条
  • [1] Stochastic Perturbations and Invariant Measures of Position Dependent Random Maps via Fourier Approximations
    Islam, Md Shafiqul
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09):
  • [2] Weakly convex and concave random maps with position dependent probabilities
    Bahsoun, W
    Góra, P
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (05) : 983 - 994
  • [3] Cryptography based on chaotic random maps with position dependent weighting probabilities
    Behnia, S.
    Akhshani, A.
    Ahadpour, S.
    Akhavan, A.
    Mahmodi, H.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 362 - 369
  • [4] Absolutely continuous invariant measures for random maps with position dependent probabilities
    Góra, P
    Boyarsky, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (01) : 225 - 242
  • [5] Computing Invariant Measures of Weakly Convex Random Maps with Position Dependent Probabilities
    Jin, Congming
    Ding, Jiu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (11):
  • [6] A Linear Spline Markov Approximation Method for Random Maps with Position Dependent Probabilities
    Jin, Congming
    Ding, Jiu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (03):
  • [7] Random Maps with Parameter-Dependent Probabilities
    Behnia, Sohrab
    Jafarizadeh, Mohammad Ali
    Akhshani, Afshin
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (12)
  • [8] A Piecewise Linear Maximum Entropy Method for Invariant Measures of Random Maps with Position-Dependent Probabilities
    Jin, Congming
    Upadhyay, Tulsi
    Ding, Jiu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (12):
  • [9] Deterministic representation for position dependent random maps
    Bahsoun, Wael
    Bose, Christopher
    Quas, Anthony
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (03) : 529 - 540
  • [10] RANDOM COMPOSING OF MAPPINGS, SMALL STOCHASTIC PERTURBATIONS AND ATTRACTORS
    GORA, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (01): : 137 - 160