Multiplicatively local spectrum-preserving maps

被引:10
作者
Bourhim, Abdellatif [1 ]
Lee, Ji Eun [2 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie Bldg, Syracuse, NY 13244 USA
[2] Sejong Univ, Dept Math & Stat, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
Nonlinear preservers; Local spectrum; The single-valued extension property; Finite rank operators; COMMUTATIVE BANACH-ALGEBRAS; JORDAN ISOMORPHISMS; OPERATOR PRODUCTS; RADIUS DISTANCE; MAXIMAL-IDEALS; MATRICES; SURJECTIONS; SPACE;
D O I
10.1016/j.laa.2018.03.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be two infinite-dimensional complex Banach spaces, and B(X) (resp. B(Y)) be the algebra of all bounded linear operators on X (resp. on Y). Fix two nonzero vectors x(0) is an element of X and y(0) is an element of Y, and let B-x0 (X)(resp. B-v0(Y)) be the collection of all operators in B(X) (resp. in B(Y)) vanishing at x(0) (resp. at y(0)). We show that if two maps phi(1) and phi(2) from B(X) onto B(Y) satisfy sigma(phi 1)(S)(phi 2),(T)(y0) = sigma(ST)(x(0)), (S, T is an element of B(X)) then cpa maps B-x0(X) onto B-y0(Y) and there exist two bijective linear mappings A : X -> Y and B : Y -> X such that Ax(0)= y(0), and phi(1)(T) = ATB for all T is an element of B(X) and phi(2)(T) = B(-1)TA(-1) for all T is not an element of B-x0(X). When X = Y = C-n, we show that the surjectivity condition on phi(1) and phi(2) is redundant. Furthermore, some known results are obtained as immediate consequences of our main results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 36 条
[1]   Maps preserving the local spectrum of skew-product of operators [J].
Abdelali, Z. ;
Achchi, A. ;
Marzouki, R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 :58-71
[2]   MAPS PRESERVING THE LOCAL SPECTRUM OF SOME MATRIX PRODUCTS [J].
Abdelali, Zit El Abidine ;
Achchi, Abdelali ;
Marzouki, Rabi .
OPERATORS AND MATRICES, 2018, 12 (02) :549-562
[3]  
Aiena P., 2004, Fredholm and Local Spectral Theory, with Application to Multipliers
[4]   A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem [J].
Argyros, Spiros A. ;
Haydon, Richard G. .
ACTA MATHEMATICA, 2011, 206 (01) :1-54
[5]   Non-linear spectrum-preserving maps [J].
Baribeau, L ;
Ransford, T .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :8-14
[6]  
Bhatia R, 1999, STUD MATH, V134, P99
[7]   Maps between Banach algebras preserving the spectrum [J].
Bourhim, A. ;
Mashreghi, J. ;
Stepanyan, A. .
ARCHIV DER MATHEMATIK, 2016, 107 (06) :609-621
[8]   Additive maps preserving local spectrum [J].
Bourhim, Abdellatif ;
Ransford, Thomas .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (03) :377-385
[9]   Jordan product and local spectrum preservers [J].
Bourhim, Abdellatif ;
Mabrouk, Mohamed .
STUDIA MATHEMATICA, 2016, 234 (02) :97-120
[10]   A survey on preservers of spectra and local spectra [J].
Bourhim, Abdellatif ;
Mashreghi, Javad .
INVARIANT SUBSPACES OF THE SHIFT OPERATOR, 2015, 638 :45-98