共 50 条
Vizing's conjecture for chordal graphs
被引:7
|作者:
Aharoni, Ron
[2
]
Szabo, Tibor
[1
]
机构:
[1] ETH, Dept Comp Sci, Zurich, Switzerland
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词:
Graph theory;
Domination;
Vizing's conjecture;
NUMBER;
D O I:
10.1016/j.disc.2008.02.025
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Vizing conjectured that gamma (G square H) >= gamma (G) gamma (H) for every pair G, H of graphs, where "square" is the Cartesian product, and gamma (G) the domination number of the graph G. Denote by gamma(i) (G) the maximum, over all independent sets I in G, of the minimal number of vertices needed to dominate I. We prove that gamma(G square H) >= gamma(i)(G)gamma(H). Since for chordal graphs gamma(i) = gamma, this proves Vizing's conjecture when G is chordal. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1766 / 1768
页数:3
相关论文