Vizing's conjecture for chordal graphs

被引:7
作者
Aharoni, Ron [2 ]
Szabo, Tibor [1 ]
机构
[1] ETH, Dept Comp Sci, Zurich, Switzerland
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Graph theory; Domination; Vizing's conjecture; NUMBER;
D O I
10.1016/j.disc.2008.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vizing conjectured that gamma (G square H) >= gamma (G) gamma (H) for every pair G, H of graphs, where "square" is the Cartesian product, and gamma (G) the domination number of the graph G. Denote by gamma(i) (G) the maximum, over all independent sets I in G, of the minimal number of vertices needed to dominate I. We prove that gamma(G square H) >= gamma(i)(G)gamma(H). Since for chordal graphs gamma(i) = gamma, this proves Vizing's conjecture when G is chordal. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1766 / 1768
页数:3
相关论文
共 14 条
[1]  
Aharoni R, 2000, J GRAPH THEOR, V35, P83, DOI 10.1002/1097-0118(200010)35:2<83::AID-JGT2>3.0.CO
[2]  
2-V
[3]   A tree version of Konig's theorem [J].
Aharoni, R ;
Berger, E ;
Ziv, R .
COMBINATORICA, 2002, 22 (03) :335-343
[4]  
Barcalkin A., 1979, B AKAD STIINTE RSS M, V1, P5
[5]  
Clark W. E., 2000, ELECTRON J COMB, V7
[6]  
Clark WE, 2003, ARS COMBINATORIA, V69, P97
[7]  
Hartnell B, 1998, MG TXB PUR APPL MATH, V209, P163
[8]  
Hartnell B.L., 1991, C NUMER, V82, P87
[9]  
Imrich W, 2000, WIL INT S D
[10]   KNESER CONJECTURE, CHROMATIC NUMBER, AND HOMOTOPY [J].
LOVASZ, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (03) :319-324