Automated estimation of ischemic core volume on noncontrast-enhanced CT via machine learning

被引:8
作者
Chen, Iris E. [1 ]
Tsui, Brian [1 ]
Zhang, Haoyue [1 ]
Qiao, Joe X. [1 ]
Hsu, William [1 ]
Nour, May [2 ]
Salamon, Noriko [1 ]
Ledbetter, Luke [1 ]
Polson, Jennifer [1 ]
Arnold, Corey [1 ]
BahrHossieni, Mersedeh [2 ]
Jahan, Reza [1 ]
Duckwiler, Gary [1 ]
Saver, Jeffrey [2 ]
Liebeskind, David [2 ]
Nael, Kambiz [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
Acute ischemic stroke; machine learning; noncontrast CT; STROKE PHYSICIANS; ALBERTA STROKE; SCORE; PERFUSION; RELIABILITY; PREDICTION; ACCURACY; SCANS;
D O I
10.1177/15910199221145487
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background Accurate estimation of ischemic core on baseline imaging has treatment implications in patients with acute ischemic stroke (AIS). Machine learning (ML) algorithms have shown promising results in estimating ischemic core using routine noncontrast computed tomography (NCCT). Objective We used an ML-trained algorithm to quantify ischemic core volume on NCCT in a comparative analysis to pretreatment magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) in patients with AIS. Methods Patients with AIS who had both pretreatment NCCT and MRI were enrolled. An automatic segmentation ML approach was applied using Brainomix software (Oxford, UK) to segment the ischemic voxels and calculate ischemic core volume on NCCT. Ischemic core volume was also calculated on baseline MRI DWI. Comparative analysis was performed using Bland-Altman plots and Pearson correlation. Results A total of 72 patients were included. The time-to-stroke onset time was 134.2/89.5 minutes (mean/median). The time difference between NCCT and MRI was 64.8/44.5 minutes (mean/median). In patients who presented within 1 hour from stroke onset, the ischemic core volumes were significantly (p = 0.005) underestimated by ML-NCCT. In patients presented beyond 1 hour, the ML-NCCT estimated ischemic core volumes approximated those obtained by MRI-DWI and with significant correlation (r = 0.56, p < 0.001). Conclusion The ischemic core volumes calculated by the described ML approach on NCCT approximate those obtained by MRI in patients with AIS who present beyond 1 hour from stroke onset.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 28 条
[1]   Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy [J].
Barber, PA ;
Demchuk, AM ;
Zhang, JJ ;
Buchan, AM .
LANCET, 2000, 355 (9216) :1670-1674
[2]   Prediction of stroke thrombolysis outcome using CT brain machine learning [J].
Bentley, Paul ;
Ganesalingam, Jeban ;
Jones, Anoma Lalani Carlton ;
Mahady, Kate ;
Epton, Sarah ;
Rinne, Paul ;
Sharma, Pankaj ;
Halse, Omid ;
Mehta, Amrish ;
Rueckert, Daniel .
NEUROIMAGE-CLINICAL, 2014, 4 :635-640
[3]   Noncontrast Computed Tomography e-Stroke Infarct Volume Is Similar to RAPID Computed Tomography Perfusion in Estimating Postreperfusion Infarct Volumes [J].
Bouslama, Mehdi ;
Ravindran, Krishnan ;
Harston, George ;
Rodrigues, Gabriel M. ;
Pisani, Leonardo ;
Haussen, Diogo C. ;
Frankel, Michael R. ;
Nogueira, Raul G. .
STROKE, 2021, 52 (02) :634-641
[4]   Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection [J].
Campbell, B. C. V. ;
Mitchell, P. J. ;
Kleinig, T. J. ;
Dewey, H. M. ;
Churilov, L. ;
Yassi, N. ;
Yan, B. ;
Dowling, R. J. ;
Parsons, M. W. ;
Oxley, T. J. ;
Wu, T. Y. ;
Brooks, M. ;
Simpson, M. A. ;
Miteff, F. ;
Levi, C. R. ;
Krause, M. ;
Harrington, T. J. ;
Faulder, K. C. ;
Steinfort, B. S. ;
Priglinger, M. ;
Ang, T. ;
Scroop, R. ;
Barber, P. A. ;
McGuinness, B. ;
Wijeratne, T. ;
Phan, T. G. ;
Chong, W. ;
Chandra, R. V. ;
Bladin, C. F. ;
Badve, M. ;
Rice, H. ;
de Villiers, L. ;
Ma, H. ;
Desmond, P. M. ;
Donnan, G. A. ;
Davis, S. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (11) :1009-1018
[5]   Automated Estimation of Acute Infarct Volume from Noncontrast Head CT Using Image Intensity Inhomogeneity Correction [J].
Cauley, Keith A. ;
Mongelluzzo, Gino J. ;
Fielden, Samuel W. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2019, 2019
[6]   CT and diffusion-weighted MR imaging in randomized order - Diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke [J].
Fiebach, JB ;
Schellinger, PD ;
Jansen, O ;
Meyer, M ;
Wilde, P ;
Bender, J ;
Schramm, P ;
Juttler, E ;
Oehler, J ;
Hartmann, M ;
Hahnel, S ;
Knauth, M ;
Hacke, W ;
Sartor, K .
STROKE, 2002, 33 (09) :2206-2210
[7]   Interobserver Agreement of ASPECT Score Distribution for Noncontrast CT, CT Angiography, and CT Perfusion in Acute Stroke [J].
Finlayson, Olga ;
John, Verity ;
Yeung, Robert ;
Dowlatshahi, Dar ;
Howard, Peter ;
Zhang, Liying ;
Swartz, Rick ;
Aviv, Richard I. .
STROKE, 2013, 44 (01) :234-236
[8]   Automated delineation of stroke lesions using brain CT images [J].
Gillebert, Celine R. ;
Humphreys, Glyn W. ;
Mantini, Dante .
NEUROIMAGE-CLINICAL, 2014, 4 :540-548
[9]   A Quantitative Method Using Head Noncontrast CT Scans to Detect Hyperacute Nonvisible Ischemic Changes in Patients With Stroke [J].
Gomolka, Ryszard S. ;
Chrzan, Robert M. ;
Urbanik, Andrzej ;
Nowinski, Wieslaw L. .
JOURNAL OF NEUROIMAGING, 2016, 26 (06) :581-587
[10]   Challenging the Ischemic Core Concept in Acute Ischemic Stroke Imaging [J].
Goyal, Mayank ;
Ospel, Johanna M. ;
Menon, Bijoy ;
Almekhlafi, Mohammed ;
Jayaraman, Mahesh ;
Fiehler, Jens ;
Psychogios, Marios ;
Chapot, Rene ;
van der Lugt, Aad ;
Liu, Jianmin ;
Yang, Pengfei ;
Agid, Ronit ;
Hacke, Werner ;
Walker, Melanie ;
Fischer, Urs ;
Asdaghi, Negar ;
McTaggart, Ryan ;
Srivastava, Padma ;
Nogueira, Raul G. ;
Moret, Jacques ;
Saver, Jeffrey L. ;
Hill, Michael D. ;
Dippel, Diederik ;
Fisher, Marc .
STROKE, 2020, 51 (10) :3147-3155