Special transverse slices and their enveloping algebras

被引:156
作者
Premet, A [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
universal enveloping algebra; deformation quantisation;
D O I
10.1006/aima.2001.2063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple, simply connected algebraic group over C, g = Lie G, N(g) the nilpotent cone of g, and (E, H, F) an sI(2)-triple in g. Let S = E + Ker ad F, the special transverse slice to the adjoint orbit Omega of E, and S-0 = S boolean AND N(g). The coordinate ring C[S-0] is naturally graded (See Slodowy, "Simple Singularities and Simple Algebraic Groups," Lecture Notes in Mathematics, Vol. 815, Springer-Verlag, Berlin/Heidelberg/New York, 1980). Let Z(g) be the centre of the enveloping algebra U(g) and eta:Z(g)-->C an algebra homomorphism. Identify g with g* via a Killing isomorphism and let X denote the linear function on g corresponding to E. Following Kawanaka (Generalized Gelfand-Graev representations and Ennola duality, in "Algebraic Groups and Related Topics" Advanced Studies in Pure Mathematics, Vol. 6, pp. 175-206, North-Holland, Amsterdam/New York/Oxford, 1985), Moeglin (C.R. Acad. Sci. Paris, Ser. I 303 No. 17 (1986), 845-848), and Premet (Invent. Math. 121 (1995), 79-117), we attach to chi a nilpotent subalgebra m(x) subset of g of dimension (dim Omega)/2 and a 1-dimensional m(chi)-module C-chi. Let (H) over tilde (chi) denote the algebra opposite to End(g)(U(g) circle times(U(mz)) C-chi) and (H) over tilde (chi,eta) = (H) over tilde (chi) circle times(Z(g)) Ceta. It is proved in the paper that the algebra (H) over tilde (chi,eta) has a natural filtration such that gr((H) over tilde (chi,eta)), the associated graded algebra, is isomorphic to C[S-0]. This construction yields natural noncommutative deformations of all singularities associated with the adjoint quotient map of g. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 55
页数:55
相关论文
共 53 条
[1]  
Bourbaki N., 1989, Commutative Algebra. Chapters 1-7
[2]  
Brieskorn E., 1970, ACT C INT MATH, V2, P279
[3]   The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras [J].
Brown, KA ;
Gordon, I .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (04) :733-779
[4]  
Carter R.W., 1985, FINITE GROUPS LIE TY
[5]   Noncommutative deformations of Kleinian singularities [J].
Crawley-Boevey, W ;
Holland, MP .
DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) :605-635
[6]   INJECTIVE HULLS OF LIE MODULES [J].
DAHLBERG, RP .
JOURNAL OF ALGEBRA, 1984, 87 (02) :458-471
[7]   QUANTIZATION AND REPRESENTATION-THEORY OF FINITE W-ALGEBRAS [J].
DEBOER, J ;
TJIN, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (03) :485-516
[8]   INTEGRAL SYMMETRICAL INVARIANTS OF WEYL AND TORSION GROUPS [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1973, 21 (04) :287-301
[9]  
Dixmier Jacques, 1974, ALGEBRES ENVELOPPANT
[10]  
DONKIN S, 1992, J LOND MATH SOC, V45, P481