Quadrangular-CNT-Fe3O4-C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries

被引:22
|
作者
Xu, Donghui [1 ]
Luo, Guoen [1 ]
Yu, Jingfang [2 ]
Chen, Wenyan [1 ]
Zhang, Congcong [1 ]
Ouyang, Dong [1 ]
Fang, Yueping [1 ]
Yu, Xiaoyuan [1 ]
机构
[1] South China Agr Univ, Coll Mat & Energy, Inst Biomat, Guangzhou 510642, Guangdong, Peoples R China
[2] Univ Oxford, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
基金
中国国家自然科学基金;
关键词
Quadrangular carbon nanotube; Ferroferric oxide; Lithium-ion battery; Anode material; HIGH-CAPACITY; TERNARY HETEROSTRUCTURES; GRAPHENE NANOSHEETS; FE3O4; NANOPARTICLES; HYBRID; OXIDE; STABILITY; CATALYST; NETWORK; GROWTH;
D O I
10.1016/j.jallcom.2017.01.259
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A q-CNT-Fe3O4-C composite was synthesized via the homogeneous precipitation of FeOOH nanoparticles on quadrangular carbon nanotubes (q-CNT) substrates. The q-CNT multi-walled carbon nanotube featured one closed end and an open end with a quadrilateral cross section, and the nanotubes were prepared by using co-carbonization method. The FeOOH nanoparticles were encapsulated by amorphous carbon via a hydrothermal treatment and high-temperature calcination of glucose. TEM showed that diameter of the q-CNT was 100 nm and the tube thickness was 20 nm. The outer wall of the q-CNT was attached to Fe3O4 with sizes ranging from 80 to 100 nm via a layer of an amorphous carbon coating. It delivered a specific capacity of 1031.5 mAh g(-1) after 100 cycles at a current density of 200 mA g(-1). After 60 cycles, it showed a high specific capacity of 485.6 mAh g(-1) even at 2000 mA g(-1). CV and EIS results further suggested that the q-CNT-Fe3O4-C composite exhibited lithium ion uptake/release reversibility and a rapid high current charge/discharge capability. The excellent rate performances of the q-CNTFe3O4-C composite can be attributed to the superior electronic transport properties of the quadrilateral CNT with one open end and the synergistic effects of the hybrid components. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:499 / 508
页数:10
相关论文
共 50 条
  • [31] Mn3O4/carbon nanotubes nanocomposites as improved anode materials for lithium-ion batteries
    Gao, Doudou
    Luo, Sisi
    Zhang, Yuhong
    Liu, Jiyan
    Wu, Huiming
    Wang, Shiquan
    He, Peixin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (11) : 3409 - 3417
  • [32] Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium-ion batteries
    Wu, Hao
    Du, Ning
    Wang, Jiazheng
    Zhang, Hui
    Yang, Deren
    JOURNAL OF POWER SOURCES, 2014, 246 : 198 - 203
  • [33] Carbon nanotube entangled Mn3O4 octahedron as anode materials for lithium-ion batteries
    Cui, Xia
    Wang, Yuqiao
    Xu, Qingyu
    Sun, Pingping
    Wang, Xiuzhen
    Wei, Tao
    Sun, Yueming
    NANOTECHNOLOGY, 2017, 28 (25)
  • [34] Synthesis and high-rate capability of quadrangular carbon nanotubes with one open end as anode materials for lithium-ion batteries
    Zhou, Jisheng
    Song, Huaihe
    Fu, Bocheng
    Wu, Bin
    Chen, Xiaohong
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (14) : 2794 - 2800
  • [35] Ge-graphene-carbon nanotube composite anode for high performance lithium-ion batteries
    Fang, Shan
    Shen, Laifa
    Zheng, Hao
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) : 1498 - 1503
  • [36] Fe3O4 Anchored onto Helical Carbon Nanofibers as High-Performance Anode in Lithium-Ion Batteries
    Ren, Shuhua
    Prakash, Raju
    Wang, Di
    Chakravadhanula, Venkata Sai Kiran
    Fichtner, Maximilian
    CHEMSUSCHEM, 2012, 5 (08) : 1397 - 1400
  • [37] Mn3O4 Nanosheet and GNS-Mn3O4 Composite as High-Performance Anode Materials for Lithium-Ion Batteries
    Sun, Weiwei
    Yu, Zhiqiang
    Lv, Li-Ping
    Xu, Yi
    Liu, Hao
    Wang, Guoxiu
    Wang, Yong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 42 (10) : 4281 - 4289
  • [38] Carbon nanotubes anchored SiOx composite anode for high cyclic stability lithium-ion batteries
    Zhang, Junying
    Chen, Linlin
    Hou, Zhi-Ling
    Zhang, Xiaoming
    Li, Chuanbo
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [39] Improved electrochemical performance of porous Fe3O4/carbon core/shell nanorods as an anode for lithium-ion batteries
    Xiong, Q. Q.
    Lu, Y.
    Wang, X. L.
    Gu, C. D.
    Qiao, Y. Q.
    Tu, J. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 536 : 219 - 225
  • [40] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198