Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane

被引:114
作者
Bhavsar, Saurabh [1 ,2 ]
Veser, Goetz [1 ,2 ]
机构
[1] Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15261 USA
[2] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA
基金
美国国家科学基金会;
关键词
CATALYTIC PARTIAL OXIDATION; TRANSITION-METAL CATALYSTS; OXYGEN CARRIERS; CO2; CAPTURE; BED REACTOR; SYNGAS PRODUCTION; HYDROGEN; GENERATION; CONVERSION; TECHNOLOGIES;
D O I
10.1039/c4ra06437b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The recent surge in natural gas reserves has revived interest in the development of novel processes to convert natural gas into valuable chemical feedstocks. In the present work, we are applying "chemical looping", a technology that has found much attention as a clean combustion technology, towards selective partial oxidation of methane to produce synthesis gas (CLPOM). By tailoring the composition of NixFe1-x-CeO2 oxygen carriers and carefully controlling the supply of oxygen, i.e., the extent of the carrier reduction and oxidation in redox cycles, the reactivity and selectivity of these carriers for partial oxidation was optimized. Addition of a small amount of Ni to iron oxides allowed the combination of the high reactivity of Ni for methane activation with the good syngas selectivity of iron oxides. An optimized carrier with the composition of Ni0.12Fe0.88-CeO2 demonstrated excellent stability in multi-cycle CLPOM operation and high syngas yields with a H-2 : CO ratio of similar to 2 and minimal carbon formation. Finally, a simplified fixed-bed reactor model was used to assess the thermal aspects of operating the process in a periodically operated fixed-bed reactor. We found that the process is highly sensitive to the degree of carrier utilization, but that maximum temperatures can be easily controlled in CLPOM via control of the active metal content and oxygen utilization in the carriers. Overall, chemical looping partial oxidation of methane emerges as an attractive alternative to conventional catalytic partial oxidation, enabling the use of low-cost transition metal oxides and air as oxidant, and resulting in inherently safe reactor operation by avoiding mixed methane/air streams.
引用
收藏
页码:47254 / 47267
页数:14
相关论文
共 44 条
[1]   Technologies for large-scale gas conversion [J].
Aasberg-Petersen, K ;
Hansen, JHB ;
Christensen, TS ;
Dybkjaer, I ;
Christensen, PS ;
Nielsen, CS ;
Madsen, SELW ;
Rostrup-Nielsen, JR .
APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) :379-387
[2]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[3]   Exergy analysis of chemical-looping combustion systems [J].
Anheden, M ;
Svedberg, G .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (16-18) :1967-1980
[4]  
[Anonymous], 2012, Annual Energy Outlook
[5]  
[Anonymous], 2013, WORLD EN OUTL 2013
[6]   SELECTIVE OXIDATION OF METHANE TO SYNTHESIS GAS-USING TRANSITION-METAL CATALYSTS [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
FOORD, JS ;
GREEN, MLH ;
GREY, CP ;
MURRELL, AJ ;
VERNON, PDF .
NATURE, 1990, 344 (6264) :319-321
[7]   Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion [J].
Bhavsar, Saurabh ;
Veser, Goetz .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (44) :15342-15352
[8]   Reducible Supports for Ni-based Oxygen Carriers in Chemical Looping Combustion [J].
Bhavsar, Saurabh ;
Veser, Goetz .
ENERGY & FUELS, 2013, 27 (04) :2073-2084
[9]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[10]   Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers [J].
de Diego, Luis F. ;
Ortiz, Maria ;
Adanez, Juan ;
Garcia-Labiano, Francisco ;
Abad, Alberto ;
Gayan, Pilar .
CHEMICAL ENGINEERING JOURNAL, 2008, 144 (02) :289-298