How Drug Photodegradation Studies Led to the Promise of New Therapies and Some Fundamental Carbanion Reaction Dynamics along the Way

被引:47
作者
Cosa, Gonzalo [1 ]
Lukeman, Matthew [2 ]
Scaiano, J. C. [3 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada
[2] Acadia Univ, Dept Chem, Wolfville, NS B4P 2R6, Canada
[3] Univ Ottawa, Dept Chem, Ottawa, ON K1N 6N5, Canada
关键词
ABSOLUTE RATE CONSTANTS; BENZOPHENONE CHROMOPHORE; PHOTOCHEMISTRY; WATER; XANTHONE; PHOTODECARBOXYLATION; KETOPROFEN; ACIDITIES; PATHWAYS; SINGLET;
D O I
10.1021/ar8001969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photodegradation of nonsteroidal anti-inflammatory drugs (NSAIDs), a class of medications that includes aspirin and ibuprofen, has generated consider-able interest since the 1990s, largely because of the phototoxic and photoallergic effects that frequently accompany their therapeutic use. Among NSAIDs, ketoprofen, which contains a benzophenone chromophore, has been extensively studied, reflecting both its notorious adverse effects and the fascination that photochemists have with benzophenone. The photochemistry of ketoprofen involves the intermediacy of an easily detectable carbanion with a remarkable lifetime of 200 ns in water; its life expectancy can in fact be extended to minutes under carefully controlled anhydrous conditions. Over the past decade, we have used some key properties of the ketoprofen carbanion to conduct mechanistic studies on carbanions: under various conditions. In particular, its ease of photogeneration provides the temporal control required for kinetic studies, which, combined with its long lifetime and readily detectable visible absorption, have enabled extensive laser flash photolysis work These studies have led to an intimate understanding of the reaction dynamics for carbanions in solution, including the determination of absolute rate constants for protonation, S(N)2, and elimination reactions. Together they provide excellent exemplars of reactivity patterns that today are part of all introductory curricula in organic chemistry and illustrate the fundamentals of nucleophilic substitution paradigms. More recently, we have begun to exploit the photochemistry of ketoprofenate and have developed the ketoprofenate photocage, a valuable tool for the photocontrolled cleavage of protecting groups and concomitant drug release. The photorelease has been illustrated with ibuprofen, among many other molecules. These photocages have been further improved with the use of the xanthone chromophore; the goal is the release of antiviral agents taking advantage of the improved UVA absorption of (xanthone xanthonate photocages). In this Account we survey our work of the past few years on the photochemistry of ketoprofen and related chromophores. Beginning with studies on the phototoxicity of ketoprofen, we have made the journey to new prodrug candidates, unraveling mechanistic elements of aroyl-substituted benzyl carbanions along the way.
引用
收藏
页码:599 / 607
页数:9
相关论文
共 30 条
[1]  
ANNA PP, 2002, PHOTOCHEM PHOTOBIOL, V1, P441
[2]  
ANSLYN EV, 2006, MOD PHYS ORGANIC CHE
[3]   Photodecarboxylation of xanthone acetic acids: C-C bond heterolysis from the singlet excited state [J].
Blake, JA ;
Gagnon, E ;
Lukeman, M ;
Scaiano, JC .
ORGANIC LETTERS, 2006, 8 (06) :1057-1060
[4]   SUBMICROSECOND FORMATION AND OBSERVATION OF REACTIVE CARBANIONS [J].
BOCKRATH, B ;
DORFMAN, LM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1974, 96 (18) :5708-5715
[5]   EQUILIBRIUM ACIDITIES IN DIMETHYL-SULFOXIDE SOLUTION [J].
BORDWELL, FG .
ACCOUNTS OF CHEMICAL RESEARCH, 1988, 21 (12) :456-463
[6]   ACIDITIES OF ANILINES AND TOLUENES [J].
BORDWELL, FG ;
ALGRIM, D ;
VANIER, NR .
JOURNAL OF ORGANIC CHEMISTRY, 1977, 42 (10) :1817-1819
[7]  
Boscá F, 2001, PHOTOCHEM PHOTOBIOL, V74, P637, DOI 10.1562/0031-8655(2001)074<0637:POTNAI>2.0.CO
[8]  
2
[9]   Photosensitizing drugs containing the benzophenone chromophore [J].
Bosca, F ;
Miranda, MA .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1998, 43 (01) :1-26
[10]   PHOTODECARBOXYLATION - MECHANISM AND SYNTHETIC UTILITY [J].
BUDAC, D ;
WAN, P .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1992, 67 (02) :135-166