Variational integrals of splitting-type: higher integrability under general growth conditions

被引:11
作者
Bildhauer, M. [1 ]
Fuchs, M. [1 ]
机构
[1] Univ Saarland, Fachbereich Math 6 1, D-66041 Saarbrucken, Germany
关键词
Decomposable variational integrals; Local minimizers; Higher integrability; Anisotropic problems; Nonstandard growth conditions; NONSTANDARD GROWTH; PARTIAL REGULARITY; ELLIPTIC-SYSTEMS; LOCAL MINIMIZERS; FUNCTIONALS;
D O I
10.1007/s10231-008-0085-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Besides other things we prove that if u is an element of L-loc(infinity)(Omega; R-M), Omega subset of R-n, locally minimizes the energy integral(Omega) [a(vertical bar(del) over tildeu vertical bar) + b(vertical bar partial derivative(n)u vertical bar)] dx, (del) over tilde :=(partial derivative(1),..., partial derivative(n-1)), with N-functions a <= b having the Delta(2)-property, then vertical bar partial derivative(n)u vertical bar(2)b(vertical bar partial derivative(n)u vertical bar) is an element of L-loc(1)(Omega). Moreover, the condition b(t) <= const t(2)a(t(2)) (*) for all large values of t implies |(del) over tildeu vertical bar(2)a(vertical bar(del) over tildeu vertical bar is an element of L-loc(1)(Omega). If n = 2, then these results can be improved up to vertical bar del u vertical bar is an element of L-loc(s) (Omega) for all s < infinity without the hypothesis (*). If n >= 3 together with M = 1, then higher integrability for any exponent holds under more restrictive assumptions than (*).
引用
收藏
页码:467 / 496
页数:30
相关论文
共 23 条
  • [1] Adams R., 2003, Pure and Applied Mathematics, V140
  • [2] [Anonymous], EXEMPLE SOLUTION DIS
  • [3] [Anonymous], 1966, GRUNDLEHREN MATH WIS
  • [4] [Anonymous], 2003, LECT NOTES MATH
  • [5] [Anonymous], 1998, ATTI SEMIN MAT FIS
  • [6] [Anonymous], 1989, DIRECT METHODS CALCU
  • [7] [Anonymous], 1996, ANN SCUOLA NORM SUP
  • [8] Bildhauer M, 2007, ASYMPTOTIC ANAL, V55, P33
  • [9] Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals
    Bildhauer, M.
    Fuchs, M.
    [J]. MANUSCRIPTA MATHEMATICA, 2007, 123 (03) : 269 - 283
  • [10] Bildhauer M, 2002, ASYMPTOTIC ANAL, V32, P293