Onsager's Conjecture with Physical Boundaries and an Application to the Vanishing Viscosity Limit

被引:45
作者
Bardos, Claude [1 ]
Titi, Edriss S. [2 ,3 ,4 ]
Wiedemann, Emil [5 ]
机构
[1] Lab JL Lions, BP187, F-75252 Paris 05, France
[2] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[4] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[5] Univ Ulm, Inst Angew Anal, Helmholtzstr 18, D-89081 Ulm, Germany
关键词
CAMASSA-HOLM EQUATIONS; ENERGY-CONSERVATION; WEAK SOLUTIONS; EULER EQUATIONS; INCOMPRESSIBLE EULER; HYDRODYNAMICS; DISSIPATION; MODEL;
D O I
10.1007/s00220-019-03493-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the incompressible Euler equations in a bounded domain in three space dimensions. Recently, the first two authors proved Onsager's conjecture for bounded domains, i.e., that the energy of a solution to these equations is conserved provided the solution is Holder continuous with exponent greater than 1/3, uniformly up to the boundary. In this contribution we relax this assumption, requiring only interior Holder regularity and continuity of the normal component of the energy flux near the boundary. The significance of this improvement is given by the fact that our new condition is consistent with the possible formation of a Prandtl-type boundary layer in the vanishing viscosity limit.
引用
收藏
页码:291 / 310
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 1996, Graduate studies in mathematics
[2]   Non-uniqueness for the Euler equations: the effect of the boundary [J].
Bardos, C. ;
Szekelyhidi, L., Jr. ;
Wiedemann, E. .
RUSSIAN MATHEMATICAL SURVEYS, 2014, 69 (02) :189-207
[3]  
Bardos C, 2018, J NONLINEAR SCI
[4]   Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains [J].
Bardos, Claude ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) :197-207
[5]   LOSS OF SMOOTHNESS AND ENERGY CONSERVING ROUGH WEAK SOLUTIONS FOR THE 3d EULER EQUATIONS [J].
Bardos, Claude ;
Titi, Edriss S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (02) :185-197
[6]   Mathematics and turbulence: where do we stand? [J].
Bardos, Claude W. ;
Titi, Edriss S. .
JOURNAL OF TURBULENCE, 2013, 14 (03) :42-76
[7]   Onsager's Conjecture for Admissible Weak Solutions [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. ;
Vicol, Vlad .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (02) :229-274
[8]   The Camassa-Holm equations and turbulence [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICA D, 1999, 133 (1-4) :49-65
[9]   A connection between the Camassa-Holm equations and turbulent flows in channels and pipes [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICS OF FLUIDS, 1999, 11 (08) :2343-2353
[10]   Energy conservation and Onsager's conjecture for the Euler equations [J].
Cheskidov, A. ;
Constantin, P. ;
Friedlander, S. ;
Shvydkoy, R. .
NONLINEARITY, 2008, 21 (06) :1233-1252