An efficient Se-doping strategy to boost sodium storage capacity of anatase TiO2 nanospheres

被引:9
作者
Song, Wei [1 ]
Ma, Chaoqun [2 ]
Yan, Shihai [2 ]
Shi, Ruina [1 ]
Zhang, Lixin [1 ]
Gao, Tiantian [1 ]
Li, Bing [1 ]
Chen, Niping [1 ]
Qiu, Zhihui [1 ]
机构
[1] North Univ China, Sch Chem Engn & Technol, Taiyuan 030051, Peoples R China
[2] Qingdao Agr Univ, Coll Chem & Pharmaceut Sci, Qingdao 266109, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; Se doping; DFT; Anode; Sodium-ion battery; ANODE MATERIALS; OXYGEN VACANCIES; ENERGY-STORAGE; ION BATTERIES; NA-ION; LI-ION; PERFORMANCE; CARBON; NANOFIBERS; NANOCRYSTALS;
D O I
10.1016/j.scriptamat.2022.114705
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Titanium dioxide (TiO2) with a suitable voltage platform and superior structure stability has captured extensive attention as the anode for sodium-ion batteries (SIBs), but the inferior electronic conductivity and sluggish diffusion rate of Na+ impede its widespread application. Herein, selenium (Se) was firstly selected as a dopant to ameliorate intrinsic electronic conductivity and create defects on the surface of TiO2. Se-doped TiO2 anode delivers an attractive sodium storage capacity, including a high initial charge capacity of 313.6 mAh g(-1) at 0.1 Ag-1, superior rate capacity (107.2 mAh g(-1) at 10.0 A g(-1)), and outstanding cycling durability (155.3 mAh g(-1) at 1.0 A g(-1) after 3000 cycles). Furthermore, theoretical calculations indicate that Se doping can significantly elevate the electronic conductivity of TiO2 and induce the redistribution of charge around doping sites which produces the local electric field and facilitates fast charge transfer during the discharge/charge process.
引用
收藏
页数:6
相关论文
共 45 条
[1]   Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage [J].
Cao, Minglei ;
Tao, Leiming ;
Lv, Xiaowei ;
Bu, Yi ;
Li, Man ;
Yin, Hong ;
Zhu, Mingqiang ;
Zhong, Zhicheng ;
Shen, Yan ;
Wang, Mingkui .
JOURNAL OF POWER SOURCES, 2018, 396 :327-334
[2]  
Chen D., Energy Environ. Sci., V14, P2244
[3]   Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage [J].
Chen, Dequan ;
Luo, Kangying ;
Yang, Zhiwei ;
Zhong, Yanjun ;
Wu, Zhenguo ;
Song, Yang ;
Chen, Guang ;
Wang, Gongke ;
Zhong, Benhe ;
Guo, Xiaodong .
CARBON, 2021, 173 :253-261
[4]   Oxygen vacancies and phase tuning of self-supported black TiO2-X nanotube arrays for enhanced sodium storage [J].
Chen, Jun ;
Fu, Yanlong ;
Sun, Fang ;
Hu, Zhengguang ;
Wang, Xing ;
Zhang, Ting ;
Zhang, Fengshou ;
Wu, Xiaoling ;
Chen, Haisheng ;
Cheng, Guoan ;
Zheng, Ruiting .
CHEMICAL ENGINEERING JOURNAL, 2020, 400
[5]   Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage [J].
Chen, Song ;
Huang, Shaozhuan ;
Zhang, Yuan-Fang ;
Fan, Shuang ;
Yan, Dong ;
Shang, Yang ;
Pam, Mei Er ;
Ge, Qi ;
Shi, Yumeng ;
Yang, Hui Ying .
NANO ENERGY, 2020, 69
[6]   Oxygen vacancies in nano-sized TiO2 anatase nanoparticles [J].
Drozd, Valeriya S. ;
Zybina, Nadezhda A. ;
Abramova, Kristina E. ;
Parfenov, Mikhail Yu. ;
Kumar, Umesh ;
Valdes, Hector ;
Smirniotis, Panagiotis G. ;
Vorontsov, Alexander V. .
SOLID STATE IONICS, 2019, 339
[7]   Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure [J].
Duffner, Fabian ;
Kronemeyer, Niklas ;
Tuebke, Jens ;
Leker, Jens ;
Winter, Martin ;
Schmuch, Richard .
NATURE ENERGY, 2021, 6 (02) :123-134
[8]   Plasma-Induced Oxygen Vacancies in Urchin-Like Anatase Titania Coated by Carbon for Excellent Sodium-Ion Battery Anodes [J].
Gan, Qingmeng ;
He, Hanna ;
Zhao, Kuangmin ;
He, Zhen ;
Liu, Suqin ;
Yang, Shuping .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) :7031-7042
[9]   Low-Cost Polyanion-Type Sulfate Cathode for Sodium-Ion Battery [J].
Gao, Yun ;
Zhang, Hang ;
Liu, Xiao-Hao ;
Yang, Zhuo ;
He, Xiang-Xi ;
Li, Li ;
Qiao, Yun ;
Chou, Shu-Lei .
ADVANCED ENERGY MATERIALS, 2021, 11 (42)
[10]   Prospects for lithium-ion batteries and beyond-a 2030 vision [J].
Grey, Clare P. ;
Hall, David S. .
NATURE COMMUNICATIONS, 2020, 11 (01)