Dimensional estimates and rectifiability for measures satisfying linear PDE constraints

被引:33
作者
Arroyo-Rabasa, Adolfo [1 ]
De Philippis, Guido [2 ]
Hirsch, Jonas [3 ]
Rindler, Filip [1 ,4 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[3] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
[4] British Lib, Alan Turing Inst, 96 Euston Rd, London NW1 2DB, England
基金
欧洲研究理事会;
关键词
Rectifiability; dimensional estimate; A-free measure; PDE constraint;
D O I
10.1007/s00039-019-00497-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the rectifiability of measures satisfying a linear PDE constraint. The obtained rectifiability dimensions are optimal for many usual PDE operators, including all first-order systems and all second-order scalar operators. In particular, our general theorem provides a new proof of the rectifiability results for functions of bounded variations (BV) and functions of bounded deformation (BD). For divergence-free tensors we obtain refinements and new proofs of several known results on the rectifiability of varifolds and defect measures.
引用
收藏
页码:639 / 658
页数:20
相关论文
共 33 条
[1]   RANK ONE PROPERTY FOR DERIVATIVES OF FUNCTIONS WITH BOUNDED VARIATION [J].
ALBERTI, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :239-274
[2]   On the differentiability of Lipschitz functions with respect to measures in the Euclidean space [J].
Alberti, Giovanni ;
Marchese, Andrea .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (01) :1-66
[3]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[4]   Fine properties of functions with bounded deformation [J].
Ambrosio, L ;
Coscia, A ;
DalMaso, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 139 (03) :201-238
[5]  
Ambrosio L., 1997, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), V25, P27
[6]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI [10.1093/oso/9780198502456.001.0001, 10.1017/S0024609301309281]
[7]  
[Anonymous], ARXIV160705188
[8]  
[Anonymous], GEOMETRIC STRU UNPUB
[9]  
[Anonymous], GRADUATE TEXTS MATH
[10]  
[Anonymous], 1969, GEOMETRIC MEASURE TH