New formulation of predictors for finite-dimensional linear control systems with input delay

被引:26
作者
Bresch-Pietri, Delphine [1 ]
Prieur, Christophe [2 ]
Trelat, Emmanuel [3 ]
机构
[1] PSL Res Univ, CAS, MINES Paristech, 60 Bd St Michel, F-75006 Paris, France
[2] Univ Grenoble Alpes, CNRS, GIPSA Lab, F-38000 Grenoble, France
[3] Univ Paris 06, Sorbonne Univ, UPMC, CNRS,UMR 7598,Lab Jacques Louis Lions, F-75005 Paris, France
关键词
Time-delay systems; Finite spectrum assignment; Prediction-based controllers; FEEDBACK STABILIZATION; SPECTRUM ASSIGNMENT; SMITH PREDICTOR; STABILITY; COMPENSATION; ROBUSTNESS;
D O I
10.1016/j.sysconle.2017.12.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on a prediction-based control for linear time invariant systems subject to a constant input delay, also known as the Artstein reduction approach. Standardly, this method consists in considering a predicted delay-free system, on which one can design straightforwardly a stabilizing controller. The resulting controller is then defined through an implicit integral equation, involving both the original system state and past values of the input. We propose here an alternative formulation which allows to write explicitly the Artstein transformation, and thus the corresponding controller, in terms of past values of the state only. This formal explicit formulation is the main contribution of the paper. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 29 条
[1]  
Adam EJ, 2000, P AMER CONTR CONF, P1452, DOI 10.1109/ACC.2000.876742
[2]   LINEAR-SYSTEMS WITH DELAYED CONTROLS - A REDUCTION [J].
ARTSTEIN, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) :869-879
[3]  
Bekiaris-Liberis N, 2015, IEEE DECIS CONTR P, P7078, DOI 10.1109/CDC.2015.7403335
[4]  
BekiarisLiberis N, 2013, ADV DES CONTROL
[5]   Delay-Adaptive Control for Nonlinear Systems [J].
Bresch-Pietri, Delphine ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (05) :1203-1218
[6]  
Fridman E., 2014, BRIKHAUSER
[7]   Survey on recent results in the stability and control of time-delay systems [J].
Gu, KQ ;
Niculescu, SI .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2003, 125 (02) :158-165
[8]   TIME-DELAY COMPENSATION FOR NONLINEAR PROCESSES [J].
HENSON, MA ;
SEBORG, DE .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1994, 33 (06) :1493-1500
[9]  
Karafyllis I, 2017, SYST CONTROL-FOUND A, P1, DOI 10.1007/978-3-319-42378-4
[10]   DEADTIME COMPENSATION FOR NONLINEAR PROCESSES [J].
KRAVARIS, C ;
WRIGHT, RA .
AICHE JOURNAL, 1989, 35 (09) :1535-1542