TRUNCATED EULER POLYNOMIALS

被引:10
作者
Komatsu, Takao [1 ]
Pita-Ruiz, Claudio [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Univ Panamer, Mexico City, DF, Mexico
关键词
Euler polynomials; truncated Euler polynomials; Bernoulli polynomials; hypergeometric Bernoulli polynomials; BERNOULLI NUMBERS;
D O I
10.1515/ms-2017-0122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a truncated Euler polynomial E-m,E-n(x) as a generalization of the classical Euler polynomial E-n(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial. (C) 2018 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:527 / 536
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 2016, J INTEGER SEQUENCES
[2]   HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES [J].
Hassen, Abdul ;
Nguyen, Hieu D. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) :767-774
[3]   HYPERGEOMETRIC ZETA FUNCTIONS [J].
Hassen, Abdul ;
Nguyen, Hieu D. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) :99-126
[4]   Sums of products of hypergeometric Bernoulli numbers [J].
Kamano, Ken .
JOURNAL OF NUMBER THEORY, 2010, 130 (10) :2259-2271
[5]  
Kim D. S., 2012, ADV DIFFERENCE EQU, V2012
[6]   Incomplete cauchy numbers [J].
Komatsu, T. ;
Mezo, I. ;
Szalay, L. .
ACTA MATHEMATICA HUNGARICA, 2016, 149 (02) :306-323
[7]   Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers [J].
Komatsu, Takao ;
Liptai, Kalman ;
Mezo, Istvan .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (3-4) :357-368
[8]   Incomplete poly-Cauchy numbers [J].
Komatsu, Takao .
MONATSHEFTE FUR MATHEMATIK, 2016, 180 (02) :271-288
[9]   HYPERGEOMETRIC CAUCHY NUMBERS [J].
Komatsu, Takao .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (03) :545-560
[10]  
Sloane N., ON LINE ENCY INTEGER