RELAXATION OSCILLATION PROFILE OF LIMIT CYCLE IN PREDATOR-PREY SYSTEM

被引:54
作者
Hsu, Sze-Bi [1 ]
Shi, Junping [2 ,3 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Harbin Normal Univ, Dept Math, Harbin 150025, Heilongjiang, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2009年 / 11卷 / 04期
关键词
Relaxation oscillator; limit cycle; predator-prey model; COMPETING PREDATORS; LYAPUNOV FUNCTIONS; UNIQUENESS; STABILITY; MODEL;
D O I
10.3934/dcdsb.2009.11.893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that some predator-prey system can possess a unique limit cycle which is globally asymptotically stable. For a prototypical predator-prey system, we show that the solution curve of the limit cycle exhibits temporal patterns of a relaxation oscillator, or a Heaviside function, when certain parameter is small.
引用
收藏
页码:893 / 911
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 1928, REV GENERALE LELECTR, DOI DOI 10.1016/J.JWEIA.2013.09.002
[2]  
[Anonymous], SERIES APPL MATH
[3]  
ARDITO A, 1995, J MATH BIOL, V33, P816
[4]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[5]   Extinction of top-predator in a three-level food-chain model [J].
Chiu, CH ;
Hsu, SB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (04) :372-380
[6]   Biological control does not imply paradox [J].
Deng, Bo ;
Jessie, Shannon ;
Ledder, Glenn ;
Rand, Alex ;
Srodulski, Sarah .
MATHEMATICAL BIOSCIENCES, 2007, 208 (01) :26-32
[7]  
Dumortier F, 1996, MEM AM MATH SOC, V121, P1
[8]  
GRASMAN J, 1987, APPL MATH SCI, V63
[9]  
HOLLING C. S., 1959, CANADIAN ENT, V91, P293
[10]   GLOBAL STABILITY OF A PREDATOR-PREY SYSTEM [J].
HSU, SB .
MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) :1-10