An upper bound for the cardinality of an s-distance set in Euclidean space

被引:5
作者
Bannai, E [1 ]
Kawasaki, K [1 ]
Nitamizu, Y [1 ]
Sato, T [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Higashi Ku, Fukuoka 8128581, Japan
关键词
05E99; 05B99; 51M99; 62K99;
D O I
10.1007/s00493-003-0032-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that if X is an s-distance set in R-m and X is on p concentric spheres then \X\ < Sigma(i=0)(2p-1) ((m+s-i-)(s=i) (1)). Moreover if X is antipodal, then \X\ less than or equal to 2Sigma(i=0)(p-1) ((m+s-)(m-1) (2i-2)).
引用
收藏
页码:535 / 557
页数:23
相关论文
共 7 条
[1]  
[Anonymous], 1999, ALGEBRAIC COMBINATOR
[2]   AN UPPER BOUND FOR THE CARDINALITY OF AN S-DISTANCE SUBSET IN REAL EUCLIDEAN-SPACE .2. [J].
BANNAI, E ;
BANNAI, E ;
STANTON, D .
COMBINATORICA, 1983, 3 (02) :147-152
[3]  
Blokhuis A., 1984, CWI Tract, V7
[4]   FISHER TYPE INEQUALITIES FOR EUCLIDEAN T-DESIGNS [J].
DELSARTE, P ;
SEIDEL, JJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :213-230
[5]  
Delsarte P., 1977, Geom. Dedicata, V6, P363, DOI DOI 10.1007/BF03187604
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2
[7]   New maximal two-distance sets [J].
Lisonek, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (02) :318-338