Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures

被引:17
作者
Bruna, Maria [1 ]
Burger, Martin [2 ]
Ranetbauer, Helene [3 ]
Wolfram, Marie-Therese [3 ,4 ]
机构
[1] Univ Oxford, Math Inst, RQQ, Woodstock Rd, Oxford OX2 6GG, England
[2] Westfal Wilhelms Univ Munster, Inst Numer & Angew Math & Cells Mot Cluster Excel, Einsteinstr 62, D-48149 Munster, Germany
[3] Austrian Acad Sci, RICAM, Altenbergerstr 63, A-4040 Linz, Austria
[4] Univ Warwick, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear parabolic equations; Interacting particle systems; Asymptotic expansion; Cross diffusion; Size exclusion; Entropy techniques and gradient flow structure; PARABOLIC-SYSTEMS; GLOBAL EXISTENCE; EQUATIONS;
D O I
10.1007/s00332-016-9348-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting cross-diffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.
引用
收藏
页码:687 / 719
页数:33
相关论文
共 26 条
[1]   From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage [J].
Adams, Stefan ;
Dirr, Nicolas ;
Peletier, Mark A. ;
Zimmer, Johannes .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (03) :791-815
[2]  
AMANN H, 1985, J REINE ANGEW MATH, V360, P47
[3]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[4]  
[Anonymous], 2013, PERTURBATION THEORY
[5]  
[Anonymous], 2008, Metric Spaces and in the Space of Probability Measures
[6]   Conservative cross diffusions and pattern formation through relaxation [J].
Bendahmane, Mostafa ;
Lepoutre, Thomas ;
Marrocco, America ;
Perthame, Benoit .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (06) :651-667
[7]   Diffusion of multiple species with excluded-volume effects [J].
Bruna, Maria ;
Chapman, S. Jonathan .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (20)
[8]   Excluded-volume effects in the diffusion of hard spheres [J].
Bruna, Maria ;
Chapman, S. Jonathan .
PHYSICAL REVIEW E, 2012, 85 (01)
[9]   Nonlinear Poisson-Nernst-Planck equations for ion flux through confined geometries [J].
Burger, M. ;
Schlake, B. ;
Wolfram, M-T .
NONLINEARITY, 2012, 25 (04) :961-990
[10]   LANE FORMATION BY SIDE-STEPPING [J].
Burger, Martin ;
Hittmeir, Sabine ;
Ranetbauer, Helene ;
Wolfram, Marie-Therese .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) :981-1005