Asymptotic enumeration methods for analyzing LDPC codes

被引:127
作者
Burshtein, D [1 ]
Miller, G [1 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
binary erasure channel (BEC); code ensembles; code spectrum; iterative decoding; low-density parity-check (LDPC) codes;
D O I
10.1109/TIT.2004.828064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how asymptotic estimates of powers of polynomials with nonnegative coefficients can be used in the analysis of low-density parity-check (LDPC) codes. In particular, we show how these estimates can be used to derive the asymptotic distance spectrum of both regular and irregular LDPC code ensembles. We then consider the binary erasure channel (BEC). Using these estimates we derive lower bounds on the error exponent, under iterative decoding, of LDPC codes used over the BEC. Both regular and irregular code structures are considered. These bounds are compared to the corresponding bounds when optimal (maximum-likelihood (ML)) decoding is applied.
引用
收藏
页码:1115 / 1131
页数:17
相关论文
共 27 条
[1]  
Boyd S., 2004, CONVEX OPTIMIZATION
[2]   Bounds on the performance of belief propagation decoding [J].
Burshtein, D ;
Miller, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) :112-122
[3]   Expander graph arguments for message-passing algorithms [J].
Burshtein, D ;
Miller, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :782-790
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]   SADDLEPOINT APPROXIMATIONS IN STATISTICS [J].
DANIELS, HE .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (04) :631-650
[6]  
DI C, 2001, P IEEE INT S INF THE, P50
[7]  
Di CY, 2002, IEEE T INFORM THEORY, V48, P1570, DOI 10.1109/TIT.2002.1003839
[8]  
FLAJOLET P, 1994, AVERAGE CASE ANAL AL
[9]  
FLAJOLET P, 1997, AVERAGE CASE ANAL AL
[10]  
Gallager RG, 1963, LOW DENSITY PARITY C