Cardioprotection by remote ischemic conditioning and its signal transduction

被引:168
作者
Kleinbongard, Petra [1 ]
Skyschally, Andreas [1 ]
Heusch, Gerd [1 ]
机构
[1] Univ Essen Gesamthsch, Sch Med, West German Heart & Vasc Ctr, Inst Pathophysiol, Hufelandstr 55, D-45122 Essen, Germany
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 2017年 / 469卷 / 02期
关键词
Cardioprotection; Infarct size; Myocardial ischaemia; Remote conditioning; Signal transduction; ELEVATION MYOCARDIAL-INFARCTION; PRESERVES MITOCHONDRIAL-FUNCTION; KAPPA-OPIOID RECEPTORS; BYPASS GRAFT-SURGERY; REPERFUSION INJURY; LIMB ISCHEMIA; PLATELET ACTIVATION; NITRIC-OXIDE; RAT-HEART; ISCHEMIA/REPERFUSION INJURY;
D O I
10.1007/s00424-016-1922-6
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Cardioprotective strategies aim to salvage myocardium from ischemia/reperfusion injury and to reduce infarct size and its consequences. Different stimuli, acting at sites remote from the heart (remote conditioning), activate molecular self-defense mechanisms at the target organ heart as well as in other parenchymal organs. Remote conditioning of the heart has been established in many experimental studies and successfully translated to patients. Remote ischemic conditioning by short repetitive cycles of ischemia/reperfusion on an extremity reduces infarct size and improves the prognosis of patients with reperfused myocardial infarction. The present review focuses on three levels of remote conditioning and its resulting cardioprotection: I) at the stimulus level, electrical stimulation, chemical/pharmacological substances, mechanical trauma and cycles of ischemia/reperfusion act at sites remote from the heart, II) at the transfer level, neuronal and humoral mediators transfer the protective signal from the periphery to the heart, and III) at the target level, receptor activation and intracellular signal transduction ultimately affect protection of the myocardium and other organs, as established in different animal models and humans/ patients. Remote conditioning is obviously a systemic response. Further mechanistic understanding is mandatory to translate the protection by remote conditioning more successfully to patients with cardiovascular disease.
引用
收藏
页码:159 / 181
页数:23
相关论文
共 173 条
[1]   Cardiac Phosphoproteomics during Remote Ischemic Preconditioning: A Role for the Sarcomeric Z-Disk Proteins [J].
Abdul-Ghani, Safa ;
Heesom, Kate J. ;
Angelini, Gianni D. ;
Suleiman, M-Saadeh .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[2]   Remote ischemic preconditioning regulates HIF-1α levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: a pilot experimental study [J].
Albrecht, Martin ;
Zitta, Karina ;
Bein, Berthold ;
Wennemuth, Gunther ;
Broch, Ole ;
Renner, Jochen ;
Schuett, Torben ;
Lauer, Fabian ;
Maahs, Daniela ;
Hummitzsch, Lars ;
Cremer, Jochen ;
Zacharowski, Kai ;
Meybohm, Patrick .
BASIC RESEARCH IN CARDIOLOGY, 2013, 108 (01)
[3]  
Arroyo-Martínez EA, 2016, ARQ BRAS CARDIOL, V107, P154
[4]   microRNA expression and its potential role in cardioprotection by ischemic postconditioning in pigs [J].
Baars, Theodor ;
Skyschally, Andreas ;
Klein-Hitpass, Ludger ;
Cario, Elke ;
Erbel, Raimund ;
Heusch, Gerd ;
Kleinbongard, Petra .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2014, 466 (10) :1953-1961
[5]   Roles of exosomes in cardioprotection [J].
Barile, Lucio ;
Moccetti, Tiziano ;
Marban, Eduardo ;
Vassalli, Giuseppe .
EUROPEAN HEART JOURNAL, 2017, 38 (18) :1372-1379
[6]   Remote ischaemic pre- and delayed postconditioning - similar degree of cardioprotection but distinct mechanisms [J].
Basalay, Marina ;
Barsukevich, Veronika ;
Mastitskaya, Svetlana ;
Mrochek, Alexander ;
Pernow, John ;
Sjoquist, Per-Ove ;
Ackland, Gareth L. ;
Gourine, Alexander V. ;
Gourine, Andrey .
EXPERIMENTAL PHYSIOLOGY, 2012, 97 (08) :908-917
[7]   Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning [J].
Basalay, Marina V. ;
Mastitskaya, Svetlana ;
Mrochek, Aleksander ;
Ackland, Gareth L. ;
del Arroyo, Ana Gutierrez ;
Sanchez, Jenifer ;
Sjoquist, Per-Ove ;
Pernow, John ;
Gourine, Alexander V. ;
Gourine, Andrey .
CARDIOVASCULAR RESEARCH, 2016, 112 (03) :669-676
[8]   Remote ischemic preconditioning does not increase circulating or effector organ concentrations of proopiomelanocortin derivates [J].
Birkelund, Thomas ;
Obad, Damir Salskov ;
Matejec, Reginald ;
Botker, Hans Erik ;
Ravn, Hanne Berg .
SCANDINAVIAN CARDIOVASCULAR JOURNAL, 2015, 49 (05) :257-263
[9]   Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial [J].
Botker, Hans Erik ;
Kharbanda, Rajesh ;
Schmidt, Michael R. ;
Bottcher, Morten ;
Kaltoft, Anne K. ;
Terkelsen, Christian J. ;
Munk, Kim ;
Andersen, Niels H. ;
Hansen, Troels M. ;
Trautner, Sven ;
Lassen, Jens Flensted ;
Christiansen, Evald Hoj ;
Krusell, Lars R. ;
Kristensen, Steen D. ;
Thuesen, Leif ;
Nielsen, Soren S. ;
Rehling, Michael ;
Sorensen, Henrik Toft ;
Redington, Andrew N. ;
Nielsen, Torsten T. .
LANCET, 2010, 375 (9716) :727-734
[10]   Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo [J].
Brandenburger, Timo ;
Huhn, Ragnar ;
Galas, Andreas ;
Pannen, Benedikt H. ;
Keitel, Verena ;
Barthel, Franziska ;
Bauer, Inge ;
Heinen, Andre .
JOURNAL OF TRANSLATIONAL MEDICINE, 2014, 12 :1-7