Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation

被引:0
|
作者
Lee, Jae H. [1 ]
Yao, Yushu [2 ]
Shrestha, Uttam [3 ]
Gullberg, Grant T. [4 ]
Seo, Youngho [3 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27599 USA
[2] NERSC Ctr, Berkeley, CA 94704 USA
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, Phys Res Lab, San Francisco, CA 94143 USA
[4] Lawrence Berkeley Natl Lab, Struct Biol & Imaging Dept, Div Life Sci, Berkeley, CA 94704 USA
关键词
D O I
暂无
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to-program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Data Handling in Large-Scale Surface Reconstruction
    Wiemann, Thomas
    Mrozinski, Marcel
    Feldschnieders, Dominik
    Lingemann, Kai
    Hertzberg, Joachim
    INTELLIGENT AUTONOMOUS SYSTEMS 13, 2016, 302 : 499 - 511
  • [2] OPTIMED: iterative optimization for large-scale inverse problems in medical imaging
    Chaari, Lotfi
    Chouzenoux, Emilie
    Pustelnik, Nelly
    Chaux, Caroline
    Moussaoui, Said
    TRAITEMENT DU SIGNAL, 2011, 28 (3-4) : 329 - 373
  • [3] Speeding up the large-scale consensus fuzzy clustering for handling Big Data
    Sassi Hidri, Minyar
    Zoghlami, Mohamed Ali
    Ben Ayed, Rahma
    FUZZY SETS AND SYSTEMS, 2018, 348 : 50 - 74
  • [4] Data Centric Framework for Large-scale High-performance Parallel Computation
    Ono, Kenji
    Kawashima, Yasuhiro
    Kawanabe, Tonaohiro
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2014, 29 : 2336 - 2350
  • [5] Parallel computation methods for large-scale nonlinear CSM
    Danielson, KT
    Akers, SA
    Adley, MD
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 217 - 220
  • [6] Parallel computation of large-scale electromagnetic field distributions
    Excell, P.S.
    Tinniswood, A.D.
    Haigh-Hutchinson, K.
    Applied Computational Electromagnetics Society Journal, 1998, 13 (02): : 179 - 187
  • [7] Efficient Large-scale Medical Data (eHealth Big Data) Analytics in Internet of Things
    Plageras, Andreas P.
    Stergiou, Christos
    Kokkonis, George
    Psannis, Kostas E.
    Ishibashi, Yutaka
    Kim, Byung-Gyu
    Gupta, B. Brij
    2017 IEEE 19TH CONFERENCE ON BUSINESS INFORMATICS (CBI), VOL 2, 2017, 2 : 21 - 27
  • [8] Parallel computation of large-scale molecular dynamics simulations
    Kwon, Sungjin
    Lee, Youngmin
    Im, Seyoung
    Experimental Mechanics in Nano and Biotechnology, Pts 1 and 2, 2006, 326-328 : 341 - 344
  • [9] Large-scale parallel data clustering
    Judd, D
    McKinley, PK
    Jain, AK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (08) : 871 - 876
  • [10] Automated Parallel Data Processing Engine with Application to Large-scale Feature Extraction
    Xing, Xin
    Dong, Bin
    Ajo-Franklin, Jonathan
    Wu, Kesheng
    PROCEEDINGS OF 2018 IEEE/ACM MACHINE LEARNING IN HPC ENVIRONMENTS (MLHPC 2018), 2018, : 37 - 46