Singular Integrals in Quantum Euclidean Spaces

被引:13
作者
Gonzalez-Perez, Adrian Manuel
Junge, Marius
Parcet, Javier
机构
基金
欧洲研究理事会;
关键词
Singular integral; pseudodifferential operator; quantum Euclidean space; L-P-SPACES; NONCOMMUTATIVE RIESZ TRANSFORMS; SMOOTH FOURIER MULTIPLIERS; CROSSED-PRODUCTS; PSEUDODIFFERENTIAL CALCULUS; MODULAR CURVATURE; HARMONIC-ANALYSIS; HARDY-SPACES; EQUIVALENCE; ALGEBRAS;
D O I
10.1090/memo/1334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calderon-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ranks. In the L2 level both Calder ' on-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove Lp-regularity of solutions for elliptic PDEs.
引用
收藏
页码:VII / +
页数:98
相关论文
共 79 条
[71]  
Takesaki M., 2003, ENCYCL MATH SCI, V6, DOI DOI 10.1007/978-3-662-10451-4
[72]  
Taylor M.E., 1991, Progress in mathematics, V100, P213, DOI DOI 10.1007/978-1-4612-0431-2
[73]  
Taylor M. E., 1981, Princeton Math. Ser., V34
[74]   UNITARY EQUIVALENCE OF FOCK REPRESENTATIONS ON WEYL ALGEBRA [J].
VANDAELE, A ;
VERBEURE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 20 (04) :268-&
[75]  
Voiculescu D, 1998, INT MATH RES NOTICES, V1998, P41
[76]  
VOICULESCU D.V., 1992, CRM MONOGRAPH SERIES, V1
[77]  
Wolff T., 1982, Lec. Notes in Math., V908, P199
[78]   Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori [J].
Xia, Runlian ;
Xiong, Xiao ;
Xu, Quanhua .
ADVANCES IN MATHEMATICS, 2016, 291 :183-227
[79]  
ZELLERMEIER G, 1968, J MATH PURE APPL, V47, P101