Singular Integrals in Quantum Euclidean Spaces

被引:13
作者
Gonzalez-Perez, Adrian Manuel
Junge, Marius
Parcet, Javier
机构
基金
欧洲研究理事会;
关键词
Singular integral; pseudodifferential operator; quantum Euclidean space; L-P-SPACES; NONCOMMUTATIVE RIESZ TRANSFORMS; SMOOTH FOURIER MULTIPLIERS; CROSSED-PRODUCTS; PSEUDODIFFERENTIAL CALCULUS; MODULAR CURVATURE; HARMONIC-ANALYSIS; HARDY-SPACES; EQUIVALENCE; ALGEBRAS;
D O I
10.1090/memo/1334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calderon-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ranks. In the L2 level both Calder ' on-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove Lp-regularity of solutions for elliptic PDEs.
引用
收藏
页码:VII / +
页数:98
相关论文
共 79 条