An Assessment of the Parallel Preconditioners for the Large Symmetric Generalized Eigenvalue Problems by CG-type Methods

被引:0
作者
Ma, Sangback [2 ]
Jang, Ho-Jong [1 ]
机构
[1] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[2] Hanyang Univ, Dept Comp Sci, Ansan, Kyung Ki Do, South Korea
来源
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL | 2009年 / 12卷 / 03期
关键词
Generalized Eigenvalue Problem; Preconditioned Conjugate Gradient; Parallel Computation; EIGENPROBLEMS; ELIMINATION; ITERATIONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Preconditioned Krylov subspace methods have proved to be efficient, for computing the interior spectrum of large symmetric generalized eigenvalue problem. As in the case of linear systems the success of these methods in many cases is due to the existence of good preconditioning techniques. In this paper we consider parallel version of ILU-type, SSOR-type, and multilevel preconditioners. Parallel implementation of our work have been made on IBM p595 Machine, and our results show that in general the Multi-Color ILU(0) gives the best performance, while for some cases with a high number of processors Multi-Color Block SSOR(MC-BSSOR) gives the best performance.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 16 条
[1]   A multi-mesh, preconditioned conjugate gradient solver for eigenvalue problems in finite element models [J].
Cho, Y ;
Yong, YK .
COMPUTERS & STRUCTURES, 1996, 58 (03) :575-583
[2]  
ELMAN HC, 1982, THESIS YALE U
[3]   AN ORTHOGONAL ACCELERATED DEFLATION TECHNIQUE FOR LARGE SYMMETRICAL EIGENPROBLEMS [J].
GAMBOLATI, G ;
SARTORETTO, F ;
FLORIAN, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 94 (01) :13-23
[4]   NESTED ITERATIONS FOR SYMMETRICAL EIGENPROBLEMS [J].
GAMBOLATI, G ;
PINI, G ;
PUTTI, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01) :173-191
[5]   2-COLOR FOURIER-ANALYSIS OF ITERATIVE ALGORITHMS FOR ELLIPTIC PROBLEMS WITH RED BLACK ORDERING [J].
KUO, CCJ ;
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (04) :767-793
[6]   INDEPENDENT SET ORDERINGS FOR PARALLEL MATRIX FACTORIZATION BY GAUSSIAN-ELIMINATION [J].
LEUZE, MR .
PARALLEL COMPUTING, 1989, 10 (02) :177-191
[7]  
LI Z, 2003, NUMERICAL LINEAR ALG, V10, P4585
[8]  
Parlett B. N., 1980, The Symmetric Eigenvalue Problem
[9]  
RUHE A, 1977, SPARSE MATRIX TECHNI, P130
[10]   ILUM: A multi-elimination ILU preconditioner for general sparse matrices [J].
Saad, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (04) :830-847