A comparison of methods for finding magnetic nulls in simulations and in situ observations of space plasmas

被引:6
作者
Olshevsky, V [1 ,2 ]
Pontin, D., I [3 ]
Williams, B. [4 ]
Parnell, C. E. [4 ]
Fu, H. S. [5 ]
Liu, Y. [5 ]
Yao, S. [6 ,7 ]
Khotyaintsev, Y., V [8 ]
机构
[1] KTH Royal Inst Technol, Lindstedtsvagen 5, S-10044 Stockholm, Sweden
[2] NAS, Main Astron Observ, Akad Zabolotnoho 27, UA-03680 Kiev, Ukraine
[3] Univ Newcastle, Sch Math & Phys Sci, Univ Dr, Callaghan, NSW 2308, Australia
[4] Univ St Andrews, St Andrews, Fife, Scotland
[5] Beihang Univ, 37 Xueyuan Rd, Beijing 100191, Peoples R China
[6] Shandong Univ, Inst Space Sci, Weihai, Peoples R China
[7] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China
[8] Swedish Inst Space Phys, Box 537, S-75121 Uppsala, Sweden
关键词
methods: numerical; magnetic fields; plasmas; Sun: magnetic fields; planets and satellites: magnetic fields; RECONNECTION; FIELD; TOPOLOGY; POINTS; SOLAR;
D O I
10.1051/0004-6361/202039182
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Magnetic nulls are ubiquitous in space plasmas, and are of interest as sites of localised energy dissipation or magnetic reconnection. As such, a number of methods have been proposed for detecting nulls in both simulation data and in situ spacecraft data from Earth's magnetosphere. The same methods can be applied to detect stagnation points in flow fields.Aims. In this paper we describe a systematic comparison of different methods for finding magnetic nulls. The Poincare index method, the first-order Taylor expansion (FOTE) method, and the trilinear method are considered.Methods. We define a magnetic field containing fourteen magnetic nulls whose positions and types are known to arbitrary precision. Furthermore, we applied the selected techniques in order to find and classify those nulls. Two situations are considered: one in which the magnetic field is discretised on a rectangular grid, and the second in which the magnetic field is discretised along synthetic "spacecraft trajectories" within the domain.Results. At present, FOTE and trilinear are the most reliable methods for finding nulls in the spacecraft data and in numerical simulations on Cartesian grids, respectively. The Poincare index method is suitable for simulations on both tetrahedral and hexahedral meshes.Conclusions. The proposed magnetic field configuration can be used for grading and benchmarking the new and existing tools for finding magnetic nulls and flow stagnation points.
引用
收藏
页数:11
相关论文
共 41 条
  • [1] [Anonymous], 2008, CANC S8, V113, pi
  • [2] Magnetospheric Multiscale Overview and Science Objectives
    Burch, J. L.
    Moore, T. E.
    Torbert, R. B.
    Giles, B. L.
    [J]. SPACE SCIENCE REVIEWS, 2016, 199 (1-4) : 5 - 21
  • [3] Chen X. H., 2017, APJ, V852, P17
  • [4] Evidence of Magnetic Nulls in the Reconnection at Bow Shock
    Chen, Z. Z.
    Fu, H. S.
    Wang, Z.
    Liu, C. M.
    Xu, Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (17-18) : 10209 - 10218
  • [5] Statistical flux tube properties of 3D magnetic carpet fields
    Close, RM
    Parnell, CE
    Mackay, DH
    Priest, ER
    [J]. SOLAR PHYSICS, 2003, 212 (02) : 251 - 275
  • [6] Dynamics and waves near multiple magnetic null points in reconnection diffusion region
    Deng, X. H.
    Zhou, M.
    Li, S. Y.
    Baumjohann, W.
    Andre, M.
    Cornilleau, N.
    Santolik, O.
    Pontin, D. I.
    Reme, H.
    Lucek, E.
    Fazakerley, A. N.
    Decreau, P.
    Daly, P.
    Nakamura, R.
    Tang, R. X.
    Hu, Y. H.
    Pang, Y.
    Buechner, J.
    Zhao, H.
    Vaivads, A.
    Pickett, J. S.
    Ng, C. S.
    Lin, X.
    Fu, S.
    Yuan, Z. G.
    Su, Z. W.
    Wang, J. F.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [7] Statistics and accuracy of magnetic null identification in multispacecraft data
    Eriksson, E.
    Vaivads, A.
    Khotyaintsev, Yu. V.
    Khotyayintsev, V. M.
    Andre, M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (17) : 6883 - 6889
  • [8] The Cluster mission - Introduction
    Escoubet, CP
    Fehringer, M
    Goldstein, M
    [J]. ANNALES GEOPHYSICAE, 2001, 19 (10-12) : 1197 - 1200
  • [9] Evidence of Magnetic Nulls in Electron Diffusion Region
    Fu, H. S.
    Cao, J. B.
    Cao, D.
    Wang, Z.
    Vaivads, A.
    Khotyaintsev, Y. V.
    Burch, J. L.
    Huang, S. Y.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (01) : 48 - 54
  • [10] Intermittent energy dissipation by turbulent reconnection
    Fu, H. S.
    Vaivads, A.
    Khotyaintsev, Y. V.
    Andre, M.
    Cao, J. B.
    Olshevsky, V.
    Eastwood, J. P.
    Retino, A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (01) : 37 - 43