Some remarks on Toeplitz multipliers and Hankel matrices

被引:6
作者
Pelczynski, Aleksander
Sukochev, Fyodor
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[2] Flinders Univ S Australia, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
关键词
upper triangular matrices; Toeplitz matrices; Hankel matrices; Schur and Toeplitz-Schur multipliers; trace classes;
D O I
10.4064/sm175-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the set of all Toeplitz-Schur multipliers sending every upper triangular matrix from the trace class into a matrix with absolutely summable entries. We show that this set admits a description completely analogous to that of the set of all Fourier multipliers from H-1 into l(1). We characterize the set of all Schur multipliers sending matrices representing bounded operators on l(2) into matrices with absolutely summable entries. Next, we present a result (due to G. Pisier) that the upper triangular parts of such Schur multipliers are precisely the Schur multipliers sending upper triangular parts of matrices representing bounded linear operators on l(2) into matrices with absolutely summable entries. Finally, we complement solutions of Mazur's Problems 8 and 88 in the Scottish Book concerning Hankel matrices.
引用
收藏
页码:175 / 204
页数:30
相关论文
共 36 条
[1]  
[Anonymous], 1979, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], Q J MATH OXFORD SER
[3]   INTERPOLATION PROBLEMS IN NEST ALGEBRAS [J].
ARVESON, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 20 (03) :208-233
[4]   SCHUR MULTIPLIERS [J].
BENNETT, G .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (03) :603-639
[5]  
BLASCO O, 1991, T AM MATH SOC, V333, P331
[6]   ON THE MINORANT PROPERTIES IN CP(H) [J].
DECHAMPSGONDIM, M ;
LUSTPIQUARD, F ;
QUEFFELEC, H .
PACIFIC JOURNAL OF MATHEMATICS, 1985, 119 (01) :89-101
[7]  
Defant Andreas, 1993, N HOLLAND MATH STUD, V176
[8]   RUC-decompositions in symmetric operator spaces [J].
Dodds, PG ;
Sukochev, FA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (03) :269-287
[9]  
Douglas RG., 1972, Banach algebra techniques in operator theory
[10]  
Dunford N., 1958, LINEAR OPERATORS, VI