Secant-like methods for solving nonlinear integral equations of the Hammerstein type

被引:78
作者
Hernández, MA [1 ]
Rubio, MJ [1 ]
Ezquerro, JA [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
关键词
secant method; convergence analysis; recurrence relations; a priori error bounds; integral equations;
D O I
10.1016/S0377-0427(99)00116-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-parametric family of secant-type iterations for solving nonlinear equations in Banach spaces. We establish a semilocal convergence result for these iterations by means of a technique based on a new system of recurrence relations. This result is then applied to obtain existence and uniqueness results for nonlinear integral equations of the Hammerstein type. We also present a numerical example where the solution of a particular Hammerstein integral equation is approximated by different secant-type methods. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1984, NONDISCRETE INDUCTIO
[2]  
ARGYROS IK, 1993, PUBL MATH-DEBRECEN, V43, P223
[3]  
Balazs M., 1973, REV ANAL NUMER THEOR, V2, P3
[4]  
Chandrasekhar S., 1950, RAD TRANSFER
[5]  
ELANGR GN, 1996, INT J COMPUT MATH, V60, P91
[6]  
ELANGR GN, 1996, J MATH ANAL APPL, V199, P579
[7]   NUMERICAL SOLVABILITY OF HAMMERSTEIN INTEGRAL-EQUATIONS OF MIXED TYPE [J].
GANESH, M ;
JOSHI, MC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (01) :21-31
[8]  
KUMAR S, 1987, MATH COMPUT, V48, P585, DOI 10.1090/S0025-5718-1987-0878692-4
[9]  
POTRA FA, 1979, NAL NUMER THEOR APPR, V8, P203
[10]   NEWTON-LIKE METHODS FOR THE COMPUTATION OF FIXED-POINTS [J].
WERNER, W .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1984, 10 (01) :77-86