Plasmonic and metamaterial structures as electromagnetic absorbers

被引:590
作者
Cui, Yanxia [1 ,2 ,3 ]
He, Yingran [1 ]
Jin, Yi [1 ]
Ding, Fei [1 ]
Yang, Liu [1 ]
Ye, Yuqian [4 ]
Zhong, Shoumin [1 ]
Lin, Yinyue [2 ,3 ]
He, Sailing [1 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Ctr Opt & Electromagnet Res, Hangzhou 310058, Zhejiang, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Adv Transducers & Intelligent Control Sys, Minist Educ, Taiyuan 030024, Shanxi Province, Peoples R China
[3] Taiyuan Univ Technol, Coll Phys & Optoelect, Taiyuan 030024, Shanxi Province, Peoples R China
[4] Hangzhou Normal Univ, Dept Phys, Hangzhou 310012, Zhejiang, Peoples R China
关键词
Absorbers; plasmonics; metamaterials; broadband; subwavelength; metallic structures; thin film; LAMELLAR METALLIC GRATINGS; INFRARED PERFECT ABSORBER; EXTRAORDINARY OPTICAL-TRANSMISSION; DIELECTRIC PHOTONIC CRYSTALS; LOCALIZED SURFACE-PLASMONS; ENHANCED RAMAN-SCATTERING; LIGHT-EMITTING DEVICES; ORGANIC SOLAR-CELLS; BROAD-BAND ABSORBER; WIDE INCIDENT ANGLE;
D O I
10.1002/lpor.201400026
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Electromagnetic absorbers have drawn increasing attention in many areas. A series of plasmonic and metamaterial structures can work as efficient narrowband absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for applications in designing selective thermal emitters, biosensing, etc. In other applications such as solar-energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. Under such a background, a variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials and so on.
引用
收藏
页码:495 / 520
页数:26
相关论文
共 237 条
[21]   How Holes Can Obscure the View: Suppressed Transmission through an Ultrathin Metal Film by a Subwavelength Hole Array [J].
Braun, Julia ;
Gompf, Bruno ;
Kobiela, Georg ;
Dressel, Martin .
PHYSICAL REVIEW LETTERS, 2009, 103 (20)
[22]   λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography [J].
Cattoni, Andrea ;
Ghenuche, Petru ;
Haghiri-Gosnet, Anne-Marie ;
Decanini, Dominique ;
Chen, Jing ;
Pelouard, Jean-Luc ;
Collin, Stephane .
NANO LETTERS, 2011, 11 (09) :3557-3563
[23]   Coupling of surface plasmons between two silver films in a plasmonic thermal emitter [J].
Chen, Chia-Yi ;
Tsai, Ming-Wei ;
Jiang, Yu-Wei ;
Ye, Yi-Han ;
Chang, Yi-Tsung ;
Lee, Si-Chen .
APPLIED PHYSICS LETTERS, 2007, 91 (24)
[24]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[25]   Interference theory of metamaterial perfect absorbers [J].
Chen, Hou-Tong .
OPTICS EXPRESS, 2012, 20 (07) :7165-7172
[26]   Antireflection Coating Using Metamaterials and Identification of Its Mechanism [J].
Chen, Hou-Tong ;
Zhou, Jiangfeng ;
O'Hara, John F. ;
Chen, Frank ;
Azad, Abul K. ;
Taylor, Antoinette J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (07)
[27]   Narrow bandwidth and highly polarized ratio infrared thermal emitter [J].
Chen, Hung-Hsin ;
Jiang, Yu-Wei ;
Wu, Yi-Ting ;
Chang, Pei-En ;
Chang, Yi-Tsung ;
Huang, Hao-Fu ;
Lee, Si-Chen .
APPLIED PHYSICS LETTERS, 2010, 97 (16)
[28]   Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy [J].
Chen, Kai ;
Adato, Ronen ;
Altug, Hatice .
ACS NANO, 2012, 6 (09) :7998-8006
[29]   Improvement of viewing angle and pixel contrast ratio in green top-emitting organic light-emitting devices [J].
Chen, Shufen ;
Xie, Wenfa ;
Huang, Wei ;
Liu, Shiyong .
OPTICS EXPRESS, 2008, 16 (12) :8868-8875
[30]   Recent Developments in Top-Emitting Organic Light-Emitting Diodes [J].
Chen, Shufen ;
Deng, Lingling ;
Xie, Jun ;
Peng, Ling ;
Xie, Linghai ;
Fan, Quli ;
Huang, Wei .
ADVANCED MATERIALS, 2010, 22 (46) :5227-5239