A structural change in the kinesin motor protein that drives motility

被引:638
作者
Rice, S
Lin, AW
Safer, D
Hart, CL
Naber, N
Carragher, BO
Cain, SM
Pechatnikova, E
Wilson-Kubalek, EM
Whittaker, M
Pate, E
Cooke, R
Taylor, EW
Milligan, RA
Vale, RD [1 ]
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[4] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[5] Univ Penn, Sch Med, Dept Physiol, Philadelphia, PA 19104 USA
[6] Univ Illinois, Beckman Inst, Dept Cell & Struct Biol, Urbana, IL 61801 USA
[7] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[8] Washington State Univ, Dept Pure & Appl Math, Pullman, WA 99164 USA
关键词
D O I
10.1038/45483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Kinesin motors power many motile processes by converting ATP energy into unidirectional motion along microtubules, The force-generating and enzymatic properties of conventional kinesin have been extensively studied; however, the structural basis of movement is unknown. Here we have detected and visualized a large conformational change of a similar to 15-amino-acid region (the neck linker) in kinesin using electron paramagnetic resonance, fluorescence resonance energy transfer, pre-steady state kinetics and cryo-electron microscopy, This region becomes immobilized and extended towards the microtubule 'plus' end when kinesin binds microtubules and ATP, and reverts to a more mobile conformation when gamma-phosphate is released after nucleotide hydrolysis, This conformational change explains both the direction of kinesin motion and processive movement by the kinesin dimer.
引用
收藏
页码:778 / 784
页数:7
相关论文
共 50 条
[1]   Mechanism of energy coupling in the F0F1-ATP synthase: The uncoupling mutation, gamma M23K, disrupts the use of binding energy to drive catalysis [J].
AlShawi, MK ;
Nakamoto, RK .
BIOCHEMISTRY, 1997, 36 (42) :12954-12960
[2]   Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules [J].
Arnal, I ;
Wade, RH .
STRUCTURE, 1998, 6 (01) :33-38
[3]   HIGH-RESOLUTION DETECTION OF MUSCLE CROSSBRIDGE ORIENTATION BY ELECTRON-PARAMAGNETIC RESONANCE [J].
BARNETT, VA ;
FAJER, P ;
POLNASZEK, CF ;
THOMAS, DD .
BIOPHYSICAL JOURNAL, 1986, 49 (01) :144-147
[4]   FAILURE OF A SINGLE-HEADED KINESIN TO TRACK PARALLEL TO MICROTUBULE PROTOFILAMENTS [J].
BERLINER, E ;
YOUNG, EC ;
ANDERSON, K ;
MAHTANI, HK ;
GELLES, J .
NATURE, 1995, 373 (6516) :718-721
[5]   The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain [J].
Case, RB ;
Pierce, DW ;
HomBooher, N ;
Hart, CL ;
Vale, RD .
CELL, 1997, 90 (05) :959-966
[6]   The loud dependence of kinesin's mechanical cycle [J].
Coppin, CM ;
Pierce, DW ;
Hsu, L ;
Vale, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (16) :8539-8544
[7]   Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction [J].
Corrie, JET ;
Brandmeier, BD ;
Ferguson, RE ;
Trentham, DR ;
Kendrick-Jones, I ;
Hopkins, SC ;
van der Heide, UA ;
Goldman, YE ;
Sabido-David, C ;
Dale, RE ;
Criddle, S ;
Irving, M .
NATURE, 1999, 400 (6743) :425-430
[8]   Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: Visualization of the pre-power stroke state [J].
Dominguez, R ;
Freyzon, Y ;
Trybus, KM ;
Cohen, C .
CELL, 1998, 94 (05) :559-571
[9]   FLUORESCENCE RESONANCE ENERGY-TRANSFER SPECTROSCOPY IS A RELIABLE RULER FOR MEASURING STRUCTURAL-CHANGES IN PROTEINS - DISPELLING THE PROBLEM OF THE UNKNOWN ORIENTATION FACTOR [J].
DOSREMEDIOS, CG ;
MOENS, PDJ .
JOURNAL OF STRUCTURAL BIOLOGY, 1995, 115 (02) :175-185
[10]   Determinants of kinesin motor polarity [J].
Endow, SA ;
Waligora, KW .
SCIENCE, 1998, 281 (5380) :1200-1202