Substitution reactions in metal-organic frameworks and metal-organic polyhedra

被引:201
作者
Han, Yi [1 ]
Li, Jian-Rong [1 ]
Xie, Yabo [1 ]
Guo, Guangsheng [1 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
关键词
POST-SYNTHETIC MODIFICATION; TO-CRYSTAL TRANSFORMATION; MOLECULAR BUILDING-BLOCKS; CARBON-DIOXIDE CAPTURE; INDUCED SINGLE-CRYSTAL; HYDROGEN STORAGE; CATION-EXCHANGE; LIGAND-EXCHANGE; ION-EXCHANGE; STRUCTURAL TRANSFORMATIONS;
D O I
10.1039/c4cs00033a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Substitution reaction, as one of the most powerful and efficient chemical reactions, has been widely used in various syntheses, including those for the design and preparation of functional molecules or materials. In the past decade, a class of newly developed inorganic-organic hybrid materials, namely metal organic materials (MOMs), has experienced a rapid development. MOMs are composed of metal-containing nodes connected by organic linkers through strong chemical bonds, and can be divided into metal organic frameworks (MOFs) and metal organic polygons/polyhedra (MOPs) with infinite and discrete structural features, respectively. Recent research has shown that the substitution reaction can be used as a new strategy in the synthesis and modification of MOFs and MOPs, particularly for pre-designed ones with desired structures and functions, which are usually difficult to access by a direct one-pot self-assembly synthetic approach. This review highlights the implementation of the substitution reaction in MOFs and MOPs. Examples of substitution reactions at metal ions, organic ligands, and free guest molecules of MOFs and MOPs are listed and analyzed. The changes or modifications in the structures and/or properties of these materials induced by the substitutions, as well as the nature of the associated reaction, are discussed, with the conclusion that the substitution reaction is really feasible and powerful in synthesizing and tailoring MOMs.
引用
收藏
页码:5952 / 5981
页数:30
相关论文
共 256 条
[1]   Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology [J].
Ahnfeldt, Tim ;
Gunzelmann, Daniel ;
Loiseau, Thierry ;
Hirsemann, Dunja ;
Senker, Juergen ;
Ferey, Gerard ;
Stock, Norbert .
INORGANIC CHEMISTRY, 2009, 48 (07) :3057-3064
[2]   Ligand design for functional metal-organic frameworks [J].
Almeida Paz, Filipe A. ;
Klinowski, Jacek ;
Vilela, Sergio M. F. ;
Tome, Joao P. C. ;
Cavaleiro, Jose A. S. ;
Rocha, Joao .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (03) :1088-1110
[3]   Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework [J].
An, Jihyun ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Pohl, Ehmke ;
Yeh, Joanne I. ;
Rosi, Nathaniel L. .
NATURE COMMUNICATIONS, 2012, 3
[4]   Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations [J].
An, Jihyun ;
Shade, Chad M. ;
Chengelis-Czegan, Demetra A. ;
Petoud, Stephane ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1220-1223
[5]   Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (24) :8376-+
[6]  
Auerbach S. M., 2003, HDB ZEOLITE SCI TECH
[7]   The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4] [J].
Bagai, Rashmi ;
Christou, George .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (04) :1011-1026
[8]   Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials [J].
Banerjee, Mainak ;
Das, Sunirban ;
Yoon, Minyoung ;
Choi, Hee Jung ;
Hyun, Myung Ho ;
Park, Se Min ;
Seo, Gon ;
Kim, Kimoon .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (22) :7524-+
[9]   VIII(OH){O2C-C6H4-CO2}•(HO2C-C6H4-CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology:: reticular synthesis with infinite inorganic building blocks? [J].
Barthelet, K ;
Marrot, J ;
Férey, G ;
Riou, D .
CHEMICAL COMMUNICATIONS, 2004, (05) :520-521
[10]  
Beck D.W., 1974, ZEOLITE MOL SIEVES