Note on edge irregular reflexive labelings of graphs

被引:12
作者
Baca, Martin [1 ,2 ]
Irfan, Muhammad [2 ]
Ryan, Joe [3 ]
Semanicova-Fenovcikova, Andrea [1 ,2 ]
Tanna, Dushyant [4 ]
机构
[1] Tech Univ Kosice, Dept Appl Math & Informat, Kosice, Slovakia
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[3] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW, Australia
[4] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW, Australia
关键词
Edge irregular reflexive labeling; Reflexive edge strength; Cycles; Cartesian product of cycles; STRENGTH;
D O I
10.1016/j.akcej.2018.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G, an edge labeling f(e) : E(G) -> {1, 2, ..., k(e)} and a vertex labeling f(v) : V(G) -> {0, 2, 4, ..., 2k(v)} are called total k-labeling, where k = max{k(e), 2k(v)}. The total k-labeling is called an edge irregular reflexive k-labeling of the graph G, if for every two different edges xy and x' y' of G, one has wt(xy) = f(v)(x) + f(e)(xy) + f(v)(y) not equal wt(x'y') = f(v)(x') + f(e)(x'y') + f(v)(y'). The minimum k for which the graph G has an edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper we determine the exact value of the reflexive edge strength for cycles, Cartesian product of two cycles and for join graphs of the path and cycle with 2K(2). (C) 2018 Kalasalingam University. Production and Hosting by Elsevier B.V.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 14 条
[1]   Irregularity strength of trees [J].
Amar, D ;
Togni, O .
DISCRETE MATHEMATICS, 1998, 190 (1-3) :15-38
[2]   Irregular labelings of circulant graphs [J].
Anholcer, Marcin ;
Palmer, Cory .
DISCRETE MATHEMATICS, 2012, 312 (23) :3461-3466
[3]  
[Anonymous], PREPRINT
[4]   On irregular total labellings [J].
Baca, Martin ;
Jendrol, Stanislav ;
Miller, Mirka ;
Ryan, Joseph .
DISCRETE MATHEMATICS, 2007, 307 (11-12) :1378-1388
[5]   Total edge irregularity strength of generalized prism [J].
Baca, Martin ;
Siddiqui, Muhammad Kamran .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 :168-173
[6]  
Chartrand G., 1988, C NUMER, V64, P187, DOI DOI 10.2307/3146243
[7]   ON THE IRREGULARITY STRENGTH OF THE M X N GRID [J].
DINITZ, JH ;
GARNICK, DK ;
GYARFAS, A .
JOURNAL OF GRAPH THEORY, 1992, 16 (04) :355-374
[8]   THE IRREGULARITY STRENGTH OF KM,M IS 4 FOR ODD-M [J].
GYARFAS, A .
DISCRETE MATHEMATICS, 1988, 71 (03) :273-274
[9]  
Ivanco J., 2006, Discussiones Mathematicae Graph Theory, V26, P449, DOI 10.7151/dmgt.1337
[10]   Total edge irregularity strength of complete graphs and complete bipartite graphs [J].
Jendrol', Stanislav ;
Miskuf, Jozef ;
Sotak, Roman .
DISCRETE MATHEMATICS, 2010, 310 (03) :400-407