Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus

被引:20
作者
Mu, Yulin [1 ]
Zhang, Chengxiao [1 ]
Li, Taihua [1 ]
Jin, Feng-Jie [1 ]
Sung, Yun-Ju [2 ]
Oh, Hee-Mock [3 ]
Lee, Hyung-Gwan [3 ]
Jin, Long [1 ]
机构
[1] Nanjing Forestry Univ, Coll Biol & Environm, Nanjing 210037, Peoples R China
[2] Korea Res Inst Biosci & Biotechnol KRIBB, BioNanotechnol Res Ctr, Daejeon 34141, Peoples R China
[3] Korea Res Inst Biosci & Biotechnol KRIBB, Cell Factory Res Ctr, Daejeon 34141, Peoples R China
基金
新加坡国家研究基金会;
关键词
CRISPR; Cas9; protein; Lactobacillus; genome editing; MUCOSAL IMMUNITY; CRISPR; CAS9; RNA; IDENTIFICATION; BACTERIA; COMPLEX; SYSTEMS; DESIGN;
D O I
10.3390/ijms232112852
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lactobacillus, a genus of lactic acid bacteria, plays a crucial function in food production preservation, and probiotics. It is particularly important to develop new Lactobacillus strains with superior performance by gene editing. Currently, the identification of its functional genes and the mining of excellent functional genes mainly rely on the traditional gene homologous recombination technology. CRISPR/Cas9-based genome editing is a rapidly developing technology in recent years. It has been widely applied in mammalian cells, plants, yeast, and other eukaryotes, but less in prokaryotes, especially Lactobacillus. Compared with the traditional strain improvement methods, CRISPR/Cas9-based genome editing can greatly improve the accuracy of Lactobacillus target sites and achieve traceless genome modification. The strains obtained by this technology may even be more efficient than the traditional random mutation methods. This review examines the application and current issues of CRISPR/Cas9-based genome editing in Lactobacillus, as well as the development trend of CRISPR/Cas9-based genome editing in Lactobacillus. In addition, the fundamental mechanisms of CRISPR/Cas9-based genome editing are also presented and summarized.
引用
收藏
页数:15
相关论文
共 99 条
[11]   Development and Application of CRISPR/Cas in Microbial Biotechnology [J].
Ding, Wentao ;
Zhang, Yang ;
Shi, Shuobo .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[12]   Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides [J].
Ding, Xiao ;
Seebeck, Timothy ;
Feng, Yongmei ;
Jiang, Yanfang ;
Davis, Gregory D. ;
Chen, Fuqiang .
CRISPR JOURNAL, 2019, 2 (01) :51-63
[13]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+
[14]   Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation [J].
Doench, John G. ;
Hartenian, Ella ;
Graham, Daniel B. ;
Tothova, Zuzana ;
Hegde, Mudra ;
Smith, Ian ;
Sullender, Meagan ;
Ebert, Benjamin L. ;
Xavier, Ramnik J. ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1262-U130
[15]   The new frontier of genome engineering with CRISPR-Cas9 [J].
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2014, 346 (6213) :1077-+
[16]   Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting [J].
Fu, Jun ;
Bian, Xiaoying ;
Hu, Shengbaio ;
Wang, Hailong ;
Huang, Fan ;
Seibert, Philipp M. ;
Plaza, Alberto ;
Xia, Liqiu ;
Mueller, Rolf ;
Stewart, A. Francis ;
Zhang, Youming .
NATURE BIOTECHNOLOGY, 2012, 30 (05) :440-+
[17]   In silico, in vitro and in vivo safety evaluation of Limosilactobacillus reuteri strains ATCC PTA-126787 & ATCC PTA-126788 for potential probiotic applications [J].
Gangaiah, Dharanesh ;
Mane, Shrinivasrao P. ;
Tawari, Nilesh R. ;
Lakshmanan, Nallakannu ;
Ryan, Valerie ;
Volland, Alyssa ;
Susanti, Dwi ;
Patel, Milind ;
Abouzeid, Abraham ;
Helmes, Emily B. ;
Kumar, Arvind .
PLOS ONE, 2022, 17 (01)
[18]   Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J].
Gasiunas, Giedrius ;
Barrangou, Rodolphe ;
Horvath, Philippe ;
Siksnys, Virginijus .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) :E2579-E2586
[19]   Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation [J].
Gilbert, Luke A. ;
Horlbeck, Max A. ;
Adamson, Britt ;
Villalta, Jacqueline E. ;
Chen, Yuwen ;
Whitehead, Evan H. ;
Guimaraes, Carla ;
Panning, Barbara ;
Ploegh, Hidde L. ;
Bassik, Michael C. ;
Qi, Lei S. ;
Kampmann, Martin ;
Weissman, Jonathan S. .
CELL, 2014, 159 (03) :647-661
[20]   Portable CRISPR-Cas9N System for Flexible Genome Engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei [J].
Goh, Yong Jun ;
Barrangou, Rodolphe .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2021, 87 (06) :1-16