Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime

被引:147
作者
Fan, Yuancheng [1 ,2 ]
Shen, Nian-Hai [3 ,4 ]
Zhang, Fuli [1 ,2 ]
Wei, Zeyong [5 ,6 ]
Li, Hongqiang [5 ,6 ]
Zhao, Qian [7 ]
Fu, Quanhong [1 ,2 ]
Zhang, Peng [3 ,4 ]
Koschny, Thomas [3 ,4 ]
Soukoulis, Costas M. [3 ,4 ,8 ]
机构
[1] Northwestern Polytech Univ, Minist Educ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Phys, Sch Sci, Xian 710129, Peoples R China
[3] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[5] Tongji Univ, Key Lab Adv Microstruct Mat MOE, Shanghai 200092, Peoples R China
[6] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[7] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China
[8] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece
来源
ADVANCED OPTICAL MATERIALS | 2016年 / 4卷 / 11期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
SHIFT; REFLECTION; PLASMONICS; METAMATERIAL; ABSORPTION; SURFACE; PHASE; DELAY; MODE;
D O I
10.1002/adom.201600303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Goos-Hanchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene is proposed. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shifts for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely, the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz "rainbow," a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves.
引用
收藏
页码:1824 / 1828
页数:5
相关论文
共 54 条
  • [1] A perfect absorber made of a graphene micro-ribbon metamaterial
    Alaee, Rasoul
    Farhat, Mohamed
    Rockstuhl, Carsten
    Lederer, Falk
    [J]. OPTICS EXPRESS, 2012, 20 (27): : 28017 - 28024
  • [2] Artmann K, 1948, ANN PHYS, V437, P87, DOI DOI 10.1002/ANDP.19484370108
  • [3] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [4] Goos-Hanchen shift in negatively refractive media
    Berman, PR
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 3 - 067603
  • [5] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
  • [6] Experimental demonstration of frequency-agile terahertz metamaterials
    Chen, Hou-Tong
    O'Hara, John F.
    Azad, Abul K.
    Taylor, Antoinette J.
    Averitt, Richard D.
    Shrekenhamer, David B.
    Padilla, Willie J.
    [J]. NATURE PHOTONICS, 2008, 2 (05) : 295 - 298
  • [7] Atomically Thin Surface Cloak Using Graphene Monolayers
    Chen, Pai-Yen
    Alu, Andrea
    [J]. ACS NANO, 2011, 5 (07) : 5855 - 5863
  • [8] Dynamically Tunable Broadband Infrared Anomalous Refraction Based on Graphene Metasurfaces
    Cheng, Hua
    Chen, Shuqi
    Yu, Ping
    Liu, Wenwei
    Li, Zhancheng
    Li, Jianxiong
    Xie, Boyang
    Tian, Jianguo
    [J]. ADVANCED OPTICAL MATERIALS, 2015, 3 (12): : 1744 - 1749
  • [9] GOOS-HANCHEN EFFECT - SIMPLE EXAMPLE OF A TIME-DELAY SCATTERING PROCESS
    CHIU, KW
    QUINN, JJ
    [J]. AMERICAN JOURNAL OF PHYSICS, 1972, 40 (12) : 1847 - +
  • [10] Eduardo C., 2015, NANOTECHNOLOGY, V26