A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations

被引:144
作者
Paraschivoiu, M
Peraire, J
Patera, AT
机构
[1] MIT,DEPT MECH ENGN,CAMBRIDGE,MA 02139
[2] MIT,DEPT AERONAUT & ASTRONAUT,CAMBRIDGE,MA 02139
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0045-7825(97)00086-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a domain decomposition finite element technique for efficiently generating lower and upper bounds to outputs which are linear functionals of the solutions to symmetric or nonsymmetric second-order coercive linear partial differential equations in two space dimensions. The method is based upon the construction of an augmented Lagrangian, in which the objective is a quadratic 'energy' reformulation of the desired output, and the constraints are the finite element equilibrium equations and intersubdomain continuity requirements. The bounds on the output for a suitably fine 'truth-mesh' discretization are then derived by appealing to a dual max min relaxation evaluated for optimally chosen adjoint and hybrid-flux candidate Lagrange multipliers generated by a K-element coarser 'working-mesh' approximation. Independent of the form of the original partial differential equation, the computation on the truth mesh is reduced to K decoupled subdomain-local, symmetric Neumann problems. The technique is illustrated for the convection-diffusion and linear elasticity equations.
引用
收藏
页码:289 / 312
页数:24
相关论文
共 24 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[3]  
AINSWORTH M, 1996, 9619 TICAM
[4]  
ALEXANDROV N, UNPUB TRUST REGION F
[5]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[6]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[7]   A-POSTERIORI ESTIMATION AND ADAPTIVE-CONTROL OF THE POLLUTION ERROR IN THE H-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (24) :4207-4235
[8]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[9]  
BECKER R, 1996, 961 IWR
[10]  
BECKER R, 1996, 9652 IWR