Border between regular and chaotic quantum dynamics

被引:92
作者
Weinstein, YS
Lloyd, S [1 ]
Tsallis, C
机构
[1] MIT, Dept Mech Engn, dArbeloff Lab Informat Syst & Technol, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
[3] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
关键词
D O I
10.1103/PhysRevLett.89.214101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify a border between regular and chaotic quantum dynamics. The border is characterized by a power-law decrease in the overlap between a state evolved under chaotic dynamics and the same state evolved under a slightly perturbed dynamics. For example, the overlap decay for the quantum kicked top is well fitted with [1 + (q - 1)(t/tau)(2)](1/(1-q)) (with the nonextensive entropic index q and tau depending on perturbation strength) in the region preceding the emergence of quantum interference effects. This region corresponds to the edge of chaos for the classical map from which the quantum chaotic dynamics is derived.
引用
收藏
页码:214101 / 214101
页数:4
相关论文
共 33 条
  • [1] Abe S., 2001, NONEXTENSIVE STAT ME
  • [2] Baldovin F, 2002, PHYS REV E, V66, DOI [10.1103/PhysRevE.66.045104, 10.1103/PhysrevE.66.045104]
  • [3] BALDOVIN F, IN PRESS EUROPHYS LE
  • [4] Quantum-classical correspondence in perturbed chaotic systems
    Benenti, G
    Casati, G
    [J]. PHYSICAL REVIEW E, 2002, 65 (06):
  • [6] BERRY MV, 1992, NEW TRENDS NUCL COLL, P183
  • [7] CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS
    BOHIGAS, O
    GIANNONI, MJ
    SCHMIT, C
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (01) : 1 - 4
  • [8] BORGES EP, IN PRESS PHYS REV LE
  • [9] Sensitivity of wave field evolution and manifold stability in chaotic systems
    Cerruti, NR
    Tomsovic, S
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 4 - 541034
  • [10] Measuring the Lyapunov exponent using quantum mechanics
    Cucchietti, F.M.
    Lewenkopf, C.H.
    Mucciolo, E.R.
    Pastawski, H.M.
    Vallejos, R.O.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04): : 1 - 046209