GEODESIC RAYS AND KAHLER-RICCI TRAJECTORIES ON FANO MANIFOLDS

被引:14
作者
Darvas, Tamas [1 ]
He, Weiyong [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
MULTIPLIER IDEAL SHEAVES; EINSTEIN METRICS; MONGE-AMPERE; TEST CONFIGURATIONS; FLOW; SPACE; ENERGY; POTENTIALS; REGULARITY; VARIETIES;
D O I
10.1090/tran/6878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose (X, J, omega) is a Fano manifold and t -> gamma(t) is a diverging Kahler-Ricci trajectory. We construct a bounded geodesic ray t -> u(t) weakly asymptotic to t -> gamma(t), along which Ding's.F functional decreases, partially confirming a folklore conjecture. In the absence of non-trivial holomorphic vector fields this proves the equivalence between geodesic stability of the functional and existence of Kahler-Einstein metrics. We also explore applications of our construction to Tian's alpha-invariant.
引用
收藏
页码:5069 / 5085
页数:17
相关论文
共 53 条
[1]  
[Anonymous], 2014, Contemp. Math.
[2]  
[Anonymous], ARXIV14097896
[3]  
[Anonymous], ARXIV14017857
[4]  
[Anonymous], ARXIV14017318
[5]  
[Anonymous], ARXIV14050401
[6]  
[Anonymous], ARXIV13055781
[7]  
[Anonymous], 1999, NO CALIFORNIA SYMPLE
[8]  
[Anonymous], ARXIV12081020
[9]  
Arezzo C, 2003, ANN SCUOLA NORM-SCI, V2, P617
[10]  
Berman R., ARXIV14056482