Improving L2 estimates to Harnack inequalities

被引:6
作者
Filippas, Stathis [1 ,2 ]
Moschini, Luisa [4 ]
Tertikas, Achilles [2 ,3 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
[3] Univ Crete, Dept Math, Iraklion 71409, Greece
[4] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
关键词
HARDY-SOBOLEV INEQUALITIES; INVERSE-SQUARE POTENTIALS; HEAT KERNEL; SCHRODINGER-OPERATORS; EQUATIONS; SEMIGROUPS; CONSTANTS; BOUNDS;
D O I
10.1112/plms/pdp002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider operators of the form L = -L-V, where L is an elliptic operator and V is a singular potential, defined on a smooth bounded domain Omega subset of R-n with Dirichlet boundary conditions. We allow the boundary of Omega to be made of various pieces of different codimension. We assume that L has a generalized first eigenfunction of which we know two-sided estimates. Under these assumptions we prove optimal Sobolev inequalities for the operator L, we show that it generates an intrinsic ultracontractive semigroup and finally we derive a parabolic Harnack inequality up to the boundary as well as sharp heat kernel estimates.
引用
收藏
页码:326 / 352
页数:27
相关论文
共 31 条
[1]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[2]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[3]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[4]   Best constants in Sobolev trace inequalities [J].
Biezuner, RJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) :575-589
[5]   Extremal functions for Hardy's inequality with weight [J].
Brezis, H ;
Marcus, M ;
Shafrir, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) :177-191
[6]  
Brezis H., 1997, Ann. Sc. Norm. Super. Pisa Cl. Sci., V25, P217
[7]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[8]   The Hardy constant [J].
Davies, EB .
QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (184) :417-431
[9]   THE EQUIVALENCE OF CERTAIN HEAT KERNEL AND GREEN-FUNCTION BOUNDS [J].
DAVIES, EB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) :88-103
[10]   ULTRACONTRACTIVITY AND THE HEAT KERNEL FOR SCHRODINGER-OPERATORS AND DIRICHLET LAPLACIANS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :335-395