Finite-Difference Time-Domain Formulation of Stochastic Noise in Macroscopic Atomic Systems

被引:25
作者
Andreasen, Jonathan [1 ,2 ]
Cao, Hui [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Finite-difference time-domain (FDTD) methods; Maxwell equations; noise; spontaneous emission; stochastic processes; MAXWELL-BLOCH EQUATIONS; LASER PHOTON FLUCTUATIONS; SINGLE-CAVITY LASER; SEMICONDUCTOR-LASERS; SPONTANEOUS EMISSION; COMPUTER-SIMULATION; NONLINEAR CRYSTALS; WAVE-PROPAGATION; QUANTUM-THEORY; SUPERFLUORESCENCE;
D O I
10.1109/JLT.2009.2024627
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A numerical model based on the finite-difference time-domain method is developed to simulate fluctuations which accompany the dephasing of atomic polarization and the decay of excited state's population. This model is based on the Maxwell-Bloch equations with c-number stochastic noise terms. We successfully apply our method to a numerical simulation of the atomic superfluorescence process. This method opens the door to further studies of the effects of stochastic noise on light-matter interaction and transient processes in complex systems without prior knowledge of modes. © 2009 IEEE.
引用
收藏
页码:4530 / 4535
页数:6
相关论文
共 22 条
[1]   Finite-difference time-domain simulation of thermal noise in open cavities [J].
Andreasen, Jonathan ;
Cao, Hui ;
Taflove, Allen ;
Kumar, Prem ;
Cao, Chang-qi .
PHYSICAL REVIEW A, 2008, 77 (02)
[2]   A Maxwell-Bloch model with discrete symmetries for wave propagation in nonlinear crystals:: An application to KDP [J].
Besse, C ;
Bidégaray-Fesquet, B ;
Bourgeade, A ;
Degond, P ;
Saut, O .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02) :321-344
[3]   Time discretizations for Maxwell-Bloch equations [J].
Bidégaray, B .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :284-300
[4]   Introducing physical relaxation terms in Bloch equations [J].
Bidégaray, B ;
Bourgeade, A ;
Reignier, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :603-613
[5]   A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics [J].
Boehringer, Klaus ;
Hess, Ortwin .
PROGRESS IN QUANTUM ELECTRONICS, 2008, 32 (5-6) :247-307
[6]   A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation [J].
Boehringer, Klaus ;
Hess, Ortwin .
PROGRESS IN QUANTUM ELECTRONICS, 2008, 32 (5-6) :159-246
[7]   Numerical methods for the bidimensional Maxwell-Bloch equations in nonlinear crystals [J].
Bourgeade, A ;
Saut, O .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (02) :823-843
[8]   ALGORITHMS FOR RANDOMNESS IN THE BEHAVIORAL-SCIENCES - A TUTORIAL [J].
BRYSBAERT, M .
BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1991, 23 (01) :45-60
[9]   QUANTUM-THEORY OF PROPAGATION OF NONCLASSICAL RADIATION IN A NEAR-RESONANT MEDIUM [J].
DRUMMOND, PD ;
RAYMER, MG .
PHYSICAL REVIEW A, 1991, 44 (03) :2072-2085
[10]   NOISE IN NEARLY-SINGLE-MODE SEMICONDUCTOR-LASERS [J].
GRAY, G ;
ROY, R .
PHYSICAL REVIEW A, 1989, 40 (05) :2452-2462