Ultrarapid On-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity

被引:113
作者
Barauna, Valerio G. [1 ]
Singh, Maneesh N. [2 ]
Barbosa, Leonardo Leal [1 ]
Marcarini, Wena Dantas [1 ]
Vassallo, Paula Frizera [1 ,3 ]
Mill, Jose Geraldo [1 ]
Ribeiro-Rodrigues, Rodrigo [4 ]
Campos, Luciene C. G. [5 ]
Warnke, Patrick H. [6 ,7 ]
Martin, Francis L. [2 ]
机构
[1] Univ Fed Espirito Santo, Dept Physiol Sci, BR-29075910 Vitoria, ES, Brazil
[2] Biocel UK Ltd, Kingston Upon Hull HU10 6TS, N Humberside, England
[3] Univ Fed Minas Gerais, Clin Hosp, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Fed Espirito Santo, Nucleo Doencas Infecciosas, BR-29075910 Vitoria, ES, Brazil
[5] Univ Estadual Santa Cruz, Dept Biol Sci, BR-45662900 Ilheus, BA, Brazil
[6] Praxisklin Ballastkai, D-24937 Flensburg, Germany
[7] Christian Albrechts Univ Kiel, Dept OMF Surg, D-24118 Kiel, Germany
关键词
D O I
10.1021/acs.analchem.0c04608
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There is an urgent need for ultrarapid testing regimens to detect the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infections in real-time within seconds to stop its spread. Current testing approaches for this RNA virus focus primarily on diagnosis by RT-qPCR, which is time-consuming, costly, often inaccurate, and impractical for general population rollout due to the need for laboratory processing. The latency until the test result arrives with the patient has led to further virus spread. Furthermore, latest antigen rapid tests still require 15-30 min processing time and are challenging to handle. Despite increased polymerase chain reaction (PCR)-test and antigen-test efforts, the pandemic continues to evolve worldwide. Herein, we developed a superfast, reagent-free, and nondestructive approach of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy with subsequent chemometric analysis toward the prescreening of virus-infected samples. Contrived saliva samples spiked with inactivated y-irradiated COVID-19 virus particles at levels down to 1582 copies/mL generated infrared (IR) spectra with a good signal-to-noise ratio. Predominant virus spectral peaks are tentatively associated with nucleic acid bands, including RNA At low copy numbers, the presence of a virus particle was found to be capable of modifying the IR spectral signature of saliva, again with discriminating wavenumbers primarily associated with RNA Discrimination was also achievable following ATR-FTIR spectral analysis of swabs immersed in saliva variously spiked with virus. Next, we nested our test system in a clinical setting wherein participants were recruited to provide demographic details, symptoms, parallel RT-qPCR testing, and the acquisition of pharyngeal swabs for ATR-FTIR spectral analysis. Initial categorization of swab samples into negative versus positive COVID-19 infection was based on symptoms and PCR results (n = 111 negatives and 70 positives). Following training and validation (using n = 61 negatives and 20 positives) of a genetic algorithm-linear discriminant analysis (GA-LDA) algorithm, a blind sensitivity of 95% and specificity of 89% was achieved. This prompt approach generates results within 2 min and is applicable in areas with increased people traffic that require sudden test results such as airports, events, or gate controls.
引用
收藏
页码:2950 / 2958
页数:9
相关论文
共 29 条
[1]   SARS-CoV-2 isolation from the first reported patients in Brazil and establishment of a coordinated task network [J].
Araujo, Danielle Bastos ;
Guaragna Machado, Rafael Rahal ;
Amgarten, Deyvid Emanuel ;
Malta, Fernanda de Mello ;
de Araujo, Gabriel Guarany ;
Monteiro, Cairo Oliveira ;
Candido, Erika Donizetti ;
Soares, Camila Pereira ;
de Menezes, Fernando Gatti ;
Cornachioni Pires, Ana Carolina ;
Ferraz Santana, Rubia Anita ;
Viana, Amanda de Oliveira ;
Dorlass, Erick ;
Thomazelli, Luciano ;
de Sousa Ferreira, Luis Carlos ;
Botosso, Viviane Fongaro ;
Guzzo Carvalho, Cristiane Rodrigues ;
Leal Oliveira, Danielle Bruna ;
Rebello Pinho, Joao Renato ;
Durigon, Edison Luiz .
MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2020, 115 :1-8
[2]   Using Fourier transform IR spectroscopy to analyze biological materials [J].
Baker, Matthew J. ;
Trevisan, Julio ;
Bassan, Paul ;
Bhargava, Rohit ;
Butler, Holly J. ;
Dorling, Konrad M. ;
Fielden, Peter R. ;
Fogarty, Simon W. ;
Fullwood, Nigel J. ;
Heys, Kelly A. ;
Hughes, Caryn ;
Lasch, Peter ;
Martin-Hirsch, Pierre L. ;
Obinaju, Blessing ;
Sockalingum, Ganesh D. ;
Sule-Suso, Josep ;
Strong, Rebecca J. ;
Walsh, Michael J. ;
Wood, Bayden R. ;
Gardner, Peter ;
Martin, Francis L. .
NATURE PROTOCOLS, 2014, 9 (08) :1771-1791
[3]   Classification tools in chemistry. Part 1: linear models. PLS-DA [J].
Ballabio, Davide ;
Consonni, Viviana .
ANALYTICAL METHODS, 2013, 5 (16) :3790-3798
[4]   Principal component analysis [J].
Bro, Rasmus ;
Smilde, Age K. .
ANALYTICAL METHODS, 2014, 6 (09) :2812-2831
[5]   Estimating the impact of mobility patterns on COVID-19 infection rates in 11 European countries [J].
Bryant, Patrick ;
Elofsson, Arne .
PEERJ, 2020, 8
[6]   Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR (Publication with Expression of Concern) [J].
Corman, Victor M. ;
Landt, Olfert ;
Kaiser, Marco ;
Molenkamp, Richard ;
Meijer, Adam ;
Chu, Daniel K. W. ;
Bleicker, Tobias ;
Bruenink, Sebastian ;
Schneider, Julia ;
Schmidt, Marie Luisa ;
Mulders, Daphne G. J. C. ;
Haagmans, Bart L. ;
van der Veer, Bas ;
van den Brink, Sharon ;
Wijsman, Lisa ;
Goderski, Gabriel ;
Romette, Jean-Louis ;
Ellis, Joanna ;
Zambon, Maria ;
Peiris, Malik ;
Goossens, Herman ;
Reusken, Chantal ;
Koopmans, Marion P. G. ;
Drosten, Christian .
EUROSURVEILLANCE, 2020, 25 (03) :23-30
[7]   Buyer beware: inflated claims of sensitivity for rapid COVID-19 tests [J].
Fitzpatrick, Meagan C. ;
Pandey, Abhishek ;
Wells, Chad R. ;
Sah, Pratha ;
Galvani, Alison P. .
LANCET, 2021, 397 (10268) :24-25
[8]  
Freitas D. L. D., 2020, SCI REP-UK, V10
[9]  
Gremmels H., 2020, ECLINICALMEDICINE
[10]   COMPUTER AIDED DESIGN OF EXPERIMENTS [J].
KENNARD, RW ;
STONE, LA .
TECHNOMETRICS, 1969, 11 (01) :137-&