A vanishing theorem on L2 harmonic forms

被引:1
作者
Chen, ZH
Zhou, CH
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
[2] Shanghai Univ Elect Power, Dept Comp Sci, Shanghai 200090, Peoples R China
关键词
harmonic form; radial sectional curvature; Hessian;
D O I
10.1016/S0252-9602(17)30307-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concernod with the L-2 harmonic forms of a complete noncompact Riemannian manifold, i,e. If M has a pole Q, lot 0 < p < n/1+root2 or root2n/1+root2 < p < n, and assume the radial section curvatures satisfy -c(1-c)/r(2) less than or equal to K-r less than or equal to c(1-c)/r(2) on M - {Q}, where 1 > c > (1+root2)p-1/n-1, then H-p = {0}. If M has a soul, then similar result is obtained.
引用
收藏
页码:379 / 387
页数:9
相关论文
共 7 条
[1]   L2-harmonic forms of a complete noncompact Riemannian manifold [J].
Chen, ZH ;
Zhou, CH .
CHINESE SCIENCE BULLETIN, 1999, 44 (01) :44-47
[2]  
CHEN ZH, 1984, CHINESE ANN MATH A, P119
[3]  
CHEN ZH, 1993, SEA B MATH
[5]   THE SPECTRUM OF THE LAPLACIAN OF MANIFOLDS OF POSITIVE CURVATURE [J].
ESCOBAR, JF ;
FREIRE, A .
DUKE MATHEMATICAL JOURNAL, 1992, 65 (01) :1-21
[6]   THE DIFFERENTIAL FORM SPECTRUM OF MANIFOLDS OF POSITIVE CURVATURE [J].
ESCOBAR, JF ;
FREIRE, A .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (01) :1-41
[7]  
GREENE RE, 1981, MICH MATH J, V28, P63