A LOCALIZED ORTHOGONAL DECOMPOSITION METHOD FOR SEMI-LINEAR ELLIPTIC PROBLEMS

被引:50
作者
Henning, Patrick [1 ]
Malqvist, Axel [1 ]
Peterseim, Daniel [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
[2] Univ Bonn, Inst Numer Simulat, D-53123 Bonn, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 05期
基金
瑞典研究理事会;
关键词
Finite element method; a priori error estimate; convergence; multiscale method; non-linear; computational homogenization; upscaling; VARIATIONAL MULTISCALE METHOD; ADVECTION-DIFFUSION PROBLEMS; FINITE-ELEMENT-METHOD; HYDRAULIC CONDUCTIVITY; RICHARDS EQUATION; HOMOGENIZATION; APPROXIMATIONS; CONVERGENCE; MODEL;
D O I
10.1051/m2an/2013141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose and analyze a localized orthogonal decomposition (LOD) method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. This Galerkin-type method is based on a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations on small patches that have a diameter of order II vertical bar log(H)vertical bar where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H-1-error with respect to the coarse mesh size even for rough coefficients. To solve the corresponding system of algebraic equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space.
引用
收藏
页码:1331 / 1349
页数:19
相关论文
共 36 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
BERNINGER H, 2007, THESIS FREIE U BERLI
[4]  
Berninger H., 2007, LECT NOTES COMPUT SC, V55, P489, DOI DOI 10.1007/978-3-540-34469-8_61.URL
[5]   FAST AND ROBUST NUMERICAL SOLUTION OF THE RICHARDS EQUATION IN HOMOGENEOUS SOIL [J].
Berninger, Heiko ;
Kornhuber, Ralf ;
Sander, Oliver .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) :2576-2597
[6]  
Berninger H, 2009, LECT NOTES COMP SCI, V70, P169
[7]   An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion [J].
Bourlioux, A ;
Majda, AJ .
COMBUSTION THEORY AND MODELLING, 2000, 4 (02) :189-210
[8]  
Brooks R. H., 1964, HYDROL PAP, V4
[9]  
BURDINE NT, 1953, T AM I MIN MET ENG, V198, P71
[10]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587