Inhibition of Mycobacterium tuberculosis AhpD, an element of the peroxiredoxin defense against oxidative stress

被引:19
作者
Koshkin, A
Zhou, XT
Kraus, CN
Brenner, JM
Bandyopadhyay, P
Kuntz, ID
Barry, CE
de Montellano, PRO
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
[2] NIAID, TB Res Stn, Rockville, MD 20852 USA
关键词
D O I
10.1128/AAC.48.7.2424-2430.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The resistance of Mycobacterium tuberculosis to isoniazid (INH) is largely linked to suppression of a catalase-peroxidase enzyme (KatG) that activates INH. In the absence of KatG, antioxidant protection is provided by enhanced expression of the peroxiredoxin AhpC, which is itself reduced by AhpD, a protein with low alkylhydroperoxidase activity of its own. Inhibition of AhpD might therefore impair the antioxidant protection afforded by AhpC and make KatG-negative strains more sensitive to oxidative stress. We report here that the 3(E),17-dioxime of testosterone is a potent competitive AhpD inhibitor, with a K-i of 50 +/- 2 nM. The inhibitor is stereospecific, in that the 3(E) but not 3(Z) isomer is active. Computational studies provide support for a proposed AhpD substrate binding site. However, the inhibitor does not completely suppress the in vitro activity of AhpC/AhpD, because a low titer of AhpD suffices to maintain AhpC activity. This finding, and the low solubility of the inhibitor, explains its inability to suppress the growth of INH-resistant M. tuberculosis in infected mouse lungs.
引用
收藏
页码:2424 / 2430
页数:7
相关论文
共 30 条
[1]   Peroxynitrite reductase activity of bacterial peroxiredoxins [J].
Bryk, R ;
Griffin, P ;
Nathan, C .
NATURE, 2000, 407 (6801) :211-215
[2]   Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein [J].
Bryk, R ;
Lima, CD ;
Erdjument-Bromage, H ;
Tempst, P ;
Nathan, C .
SCIENCE, 2002, 295 (5557) :1073-1077
[3]   CLONING AND SEQUENCING OF THIOL-SPECIFIC ANTIOXIDANT FROM MAMMALIAN BRAIN - ALKYL HYDROPEROXIDE REDUCTASE AND THIOL-SPECIFIC ANTIOXIDANT DEFINE A LARGE FAMILY OF ANTIOXIDANT ENZYMES [J].
CHAE, HZ ;
ROBISON, K ;
POOLE, LB ;
CHURCH, G ;
STORZ, G ;
RHEE, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7017-7021
[4]  
CHAE HZ, 1994, J BIOL CHEM, V269, P27670
[5]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[6]   The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid [J].
Deretic, V ;
PaganRamos, E ;
Zhang, YQ ;
Dhandayuthapani, S ;
Via, LE .
NATURE BIOTECHNOLOGY, 1996, 14 (11) :1557-1561
[7]   Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium [J].
Ellis, HR ;
Poole, LB .
BIOCHEMISTRY, 1997, 36 (43) :13349-13356
[8]  
Ewing TJA, 1997, J COMPUT CHEM, V18, P1175, DOI 10.1002/(SICI)1096-987X(19970715)18:9<1175::AID-JCC6>3.0.CO
[9]  
2-O
[10]  
Fox W, 1999, INT J TUBERC LUNG D, V3, pS231